Gleichung zweier Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:22 Do 21.11.2013 | Autor: | palzwei |
Hallo,
ich will eine Gleichung mit 2 Ableitungen auflösen, aber irgendwie steh ich gerade auf dem Schlauch die Gleichung: 2*x=1/(2*wurzel x)
würde mich sehr darüber freuen wenn mir jemand die einzelnen Schritte dieser auflösung schreiben könnte
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:14 Do 21.11.2013 | Autor: | palzwei |
Ich habe zwar die Befürchtung das ich mich wieder verrechnet habe aber bei mir würde dann [mm] x^2/2=(1/(2*wurzel [/mm] x))*(wurzl x/2) rauskommen
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:56 Do 21.11.2013 | Autor: | chrisno |
> Ich habe zwar die Befürchtung das ich mich wieder
> verrechnet habe aber bei mir würde dann [mm]x^2/2=(1/(2*wurzel[/mm]
> x))*(wurzl x/2) rauskommen
Bitte benutze der Formeleditor. Du kannst diese Antwort zitieren und Dir dabei anschauen, wie das geht. Je mehr Du den Helfern entgegenkommst, desto williger werden sie. Aufgeräumt sieht Deine Formel so aus.
[mm]\bruch{x^2}{2} = \bruch{1}{2*\wurzel {x}} \cdot \wurzel {\bruch{x}{2}}[/mm]
Ist das der Ausdruck, den Du meinst? Gehen wir zurück:
$ 2 [mm] \cdot [/mm] x = [mm] \bruch{1}{2 \cdot \wurzel{x}} [/mm] $
Nun rechne vor:
Die linke Seite: $2 [mm] \cdot [/mm] x [mm] \cdot \bruch{\wurzel{x}}{2} [/mm] = $?
Die rechte Seite: $ [mm] \bruch{1}{2 \cdot \wurzel{x}} \cdot \bruch{\wurzel{x}}{2} [/mm] =$?
|
|
|
|