www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Gleichungen
Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:48 Fr 06.01.2006
Autor: exit

Hallo!

Ich habe :

[mm] y=f(x)=-\bruch{1}{3}*x^3-5x^2+7x-8= [/mm]

dann bekomme ich [mm] x^3-15x^2+21x-24= [/mm]

und wie gehts dann weiter?

        
Bezug
Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Fr 06.01.2006
Autor: exit

Und auch noch:

[mm] (2x+3y)^3=? [/mm]

Bezug
                
Bezug
Gleichungen: Tipp
Status: (Antwort) fertig Status 
Datum: 15:05 Fr 06.01.2006
Autor: Disap


> Und auch noch:
>  
> [mm](2x+3y)^3=?[/mm]  

Willst du hier die Klammer auflösen? Probiers doch einmal, indem du es dir etwas anders aufschreibst:

[mm] (2x+3y)^3=(2x+3y)^2*(2x+3y)^1=... [/mm]

Das erstere ist ein Binom -> als heißen Tipp.
Kommst du nun alleine weiter?

mfG!
Disap

Bezug
                        
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Fr 06.01.2006
Autor: exit

Dachte ich mir auch.Klar,komme ich weiter!

Danke

Bezug
        
Bezug
Gleichungen: Funktionsgleichung richtig?
Status: (Antwort) fertig Status 
Datum: 15:03 Fr 06.01.2006
Autor: Disap


> Hallo!

Moin.

> Ich habe :
>  
> [mm]y=f(x)=-\bruch{1}{3}*x^3-5x^2+7x-8=[/mm]
>  
> dann bekomme ich [mm]x^3-15x^2+21x-24=[/mm]

[notok]
Wenn man streng ist, darf man das so nicht schreiben, da folgende Fehler:
1) [mm] x^3-15x^2+21x-24 [/mm] = 0 (wenn dieser Term richtig wäre)

(Wichtig diese Schreibweise)

2) [mm] -\bruch{1}{3}*x^3-5x^2+7x-8 [/mm] |*(-3)
[mm] 0=x^3+15x^2-21x+24 [/mm]

Also hast du das Minuszeichen vergessen! Entweder war es ein Tippfehler (bei f(x) ) oder du hast es eben "vergessen".
  

> und wie gehts dann weiter?

Die Funktionsgleichung lautet
[mm] f(x)=-\bruch{1}{3}*x^3-5x^2+7x-8 [/mm]

Und davon willst du die Nullstellen berechnen?
Normalerweise geht man ja so vor:
Nullstelle "raten" -> Polynomdivision, bis man auf einen Ausdruck mit [mm] x^2 [/mm] kommt und diese dann mit PQ-Formel lösen.
Aber in diesem Fall gibts nur eine Nullstelle bei ungefähr

x [mm] \approx [/mm] -16,37

In Klasse 9-10 sehe ich da jetzt keine Möglichkeit, das zu lösen. Es gibt zwar spezielle Näherungsverfahren u.ä. -> aber ich tippe mal darauf, dass du die Funktionsgleichung irgendwie falsch abgetippt hattest. Melde dich deswegen am besten noch einmal, dann können wir ja weiter sehen. Aber einen kleinen Trick für die 10. Klasse sehe ich da auf anhieb nicht.

Viele Grüße
Disap




Bezug
                
Bezug
Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Fr 06.01.2006
Autor: exit

Korrektur:

[mm] y=f(x)=\bruch{1}{3}*x^3-5x^2+7x-8 [/mm]

[mm] y'=\bruch{dy}{dx}=\bruch{d f(x)}{dx}=f'(x) [/mm]

y´=

Bezug
                        
Bezug
Gleichungen: Also Ableitung?
Status: (Antwort) fertig Status 
Datum: 15:51 Fr 06.01.2006
Autor: Zwerglein

Hi, exit,

> Korrektur:
>  
> [mm]y=f(x)=\bruch{1}{3}*x^3-5x^2+7x-8[/mm]
>  
> [mm]y'=\bruch{dy}{dx}=\bruch{d f(x)}{dx}=f'(x)[/mm]
>  
> y´=

Also sollst Du die erste Ableitung berechnen?
Dazu ist folgende Regel besonders wichtig:
f(x) = [mm] x^{n} [/mm]  =>  f'(x) = [mm] n*x^{n-1} [/mm]

Aus [mm] x^{3} [/mm] wird also beim Ableiten [mm] 3*x^{2}, [/mm] aus [mm] x^{2} [/mm] wird 2*x usw.
Weiter merkst Du Dir: f(x) = x => f'(x) = 1
und:
Konstante ohne x fallen einfach weg!

In Deinem Fall:
[mm] f(x)=\bruch{1}{3}*x^3-5x^2+7x-8 [/mm]

=> f'(x) = [mm] \bruch{1}{3}*3*x^{2} [/mm] - 5*2*x + 7*1 - 0

Vereinfacht:
f'(x) [mm] =x^{2} [/mm] - 10x + 7.

mfG!
Zwerglein

Bezug
                                
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Fr 06.01.2006
Autor: exit

Vielen dank!

Jetzt ist mir Klar!

Grüße

Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]