www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Gleichungen
Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:37 Sa 04.11.2006
Autor: reiph

Aufgabe
Zeichnen Sie die Graphen der Funktion mit [mm] y=x^-1 [/mm] und mit y=x+4 in ein gemeinsames Koordinatensystem. Berechnen Sie die Koordinaten der Schnittpunkte der beiden Graphen und kontrollieren Sie das Ergebnis an der Zeichnung.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Die erste Aufgabestellung habe ich schon zeichnerisch erledigt.
P1 hat die Koordinaten (- 4,25; -0,25) P2=(0,25; 4,25).

[mm] x^-1=x+4 [/mm]  | * x
  1=x²+4x  | - 1
  0=x²+4x-1
[mm] x_1; _2=-2\pm\wurzel{4+1} [/mm]
[mm] x_1; _2=-2\pm2,25 [/mm]
[mm] x_1=0,25 [/mm] [mm] x_2=4,25 [/mm]
Wo liegt mein Denkfehler?

        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Sa 04.11.2006
Autor: MontBlanc

Hi,

erstmal meine Frage, ich würde gerne wissen, ob es [mm] x^{-1} [/mm] heißen soll.

Im folgenden gehe ich einfach mal davon aus.
Wenn es [mm] y=x^{-1} [/mm] heißen soll, handelt es sich hierbei ja um die Funktionsgleichung einer Hyperbel. Bei y=x+4, handelt es sich um eine Gerade die um 4 nach oben verschoben wurde.

Jetzt ist es schon richtig, dass du das ganze mit der pq-Formel ausgerechnet hast, aber die beiden Werte die du rausbekommst, sind erstens die x-Werte der Schnittpunkte, und zweitens sind sie falsch, denn die Wurzel aus 5 ist mit sicherheit nicht 2,25.

Ich habe raus:

[mm] x_1=-2+\wurzel{5} [/mm]

[mm] x_2=-2-\wurzel{5} [/mm]

Diese musst du jetzt in deine Ausgangsgleichung einsetzen, also in

[mm] f_1(x)=x^{-1} [/mm]

oder

[mm] f_2(x)=4+x [/mm]

Dann bekommst du die y-Werte.

Für [mm] S_1 [/mm] habe ich [mm] (\wurzel{5}-2/\wurzel{5}+2)\approx(0,236/4,236) [/mm]

Bis denn



Bezug
        
Bezug
Gleichungen: 2 Fehler
Status: (Antwort) fertig Status 
Datum: 15:47 So 05.11.2006
Autor: informix

Hallo reiph,

> Zeichnen Sie die Graphen der Funktion mit [mm]y=x^{-1}[/mm] und mit
> y=x+4 in ein gemeinsames Koordinatensystem. Berechnen Sie
> die Koordinaten der Schnittpunkte der beiden Graphen und
> kontrollieren Sie das Ergebnis an der Zeichnung.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Die erste Aufgabestellung habe ich schon zeichnerisch
> erledigt.
>  P1 hat die Koordinaten (- 4,25; -0,25) P2=(0,25; 4,25).
>  
> [mm]x^{-1}=x+4[/mm]  | * x
>    1=x²+4x  | - 1
>    0=x²+4x-1
>  [mm]x_1; _2=-2\pm\wurzel{4+1}[/mm]

[daumenhoch]
Wie kommst du auf [mm] $\wurzel{5}=2,25$ [/mm] ? [verwirrt] hier liegt der Fehler.
Kontrolle: [mm] 2,25^2=(\frac{9}{4})^2=\frac{81}{16}\ne5 [/mm]

>  [mm]x_1; _2=-2\pm2,25[/mm]
>  [mm]x_1=0,25[/mm]
> [mm]x_2=\red{-}4,25[/mm]

Hier fehlt ein Minuszeichen

>  Wo liegt mein Denkfehler?

Jetzt klar(er)?

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]