www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenGleichungen und Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Gleichungen und Funktionen
Gleichungen und Funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen und Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:31 Di 12.03.2013
Autor: derluxe

Aufgabe
Wie müssen die Koeffizienten a und b der Funktion y = a * lg(bx) lauten, wenn die Funktionskurve durch die Punkte (1;2) und (10;4) verlaufen soll?

Zu dieser Aufgabe habe ich erst ein Lösungsansatz gefunden. Ich würde zuerst zwei Funktionen aufstellen:

2 = a * lg(b)
4 = a * lg(10b)

Nun kann man einen nach einer Variablen umstellen und in die andere einsetzen:

2  / lg(b) = a
4 = (2 / lg(b)) * lg(10b)

Wie rechne ich jetzt die Variable b aus?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichungen und Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Di 12.03.2013
Autor: schachuzipus

Hallo derluxe und herzlich [willkommenmr],

wir freuen uns immer über ein kleines nettes "Hallo" zu Beginn.

Das erhöht erfahrungsgemäß auch die Antwortbereitschaft immens ...


> Wie müssen die Koeffizienten a und b der Funktion y = a *
> lg(bx) lauten, wenn die Funktionskurve durch die Punkte
> (1;2) und (10;4) verlaufen soll?
>  Zu dieser Aufgabe habe ich erst ein Lösungsansatz
> gefunden. Ich würde zuerst zwei Funktionen aufstellen:
>  
> 2 = a * lg(b)
>  4 = a * lg(10b) [ok]
>  
> Nun kann man einen nach einer Variablen umstellen und in
> die andere einsetzen:
>  
> 2  / lg(b) = a
>  4 = (2 / lg(b)) * lg(10b) [ok]
>  
> Wie rechne ich jetzt die Variable b aus?

Du brauchst die Logarithmusgesetze: [mm]\lg(xy)=\lg(x)+\lg(y)[/mm] und [mm]\lg(10)=...[/mm]

M.E. ist es geschickter, statt zuerst nach a aufzulösen, dieses Logarithmusgesetz zuerst mal auf die zweite Gleichung anzuwenden. Da wirst du die erste Gleichung wiederfinden ....

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Gleichungen und Funktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 13.03.2013
Autor: derluxe

Aufgabe
Wie müssen die Koeffizienten a und b der Funktion y = a * lg(bx) lauten, wenn die Funktionskurve durch die Punkte (1;2) und (10;4) verlaufen soll?

Hi,
vielen Dank für deine Antwort. Dieses Gesetz ist mir geläufig. Ich komme aber dennoch nach Anwendung auf die zweite Gleichung auf kein Ergebnis.

4 = (2 / lg(b)) * lg(10) + lg(b)

Kann mir jemand beim Lösen helfen?

Bezug
                        
Bezug
Gleichungen und Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Mi 13.03.2013
Autor: schachuzipus

Hallo nochmal,


> Wie müssen die Koeffizienten a und b der Funktion y = a *
> lg(bx) lauten, wenn die Funktionskurve durch die Punkte
> (1;2) und (10;4) verlaufen soll?
>  Hi,
>  vielen Dank für deine Antwort. Dieses Gesetz ist mir
> geläufig. Ich komme aber dennoch nach Anwendung auf die
> zweite Gleichung auf kein Ergebnis.
>  
> 4 = (2 / lg(b)) * lg(10) + lg(b)

Hier fehlen entscheidende Klammern, richtig:

[mm]4=\frac{2}{\lg(b)}\cdot{}\red{\left[}\lg(10)+\lg(b)\red{\left]}[/mm]

>  
> Kann mir jemand beim Lösen helfen?  

Hatte ich doch schon gemacht. Was ist [mm] $\lg(10)=\log_{10}(10)$ [/mm] ?

Setze das ein und alles löst sich in Wohlgefallen auf ...

Gruß

schachuzipus


Bezug
                                
Bezug
Gleichungen und Funktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:33 Do 14.03.2013
Autor: derluxe

Hi,
danke für deine Antwort. Damit wird das schon übersichtlicher.
Um die Gleichung nun zu lösen, möchte ich lg(b) alleine stehen lassen und multipliziere mit jenem.

4 * lg(b) = 2 * [ 1 +  lg(b) ]

4 * lg(b) = 2 + 2 * lg(b)

2 * lg(b) = 2

lg(b) = 1

b = 10

Super, das hat geklappt. Jedoch sieht die Aufgabe leichter aus als sie ist.


Bezug
                                        
Bezug
Gleichungen und Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Do 14.03.2013
Autor: derluxe

Hallo nochmal,
müsste ich nicht beim ersten Schritt die Summanden in der Klammer mit lg(b) multiplizieren? Ich meine mich erinnern zu können, dass jeder Summand multipliziert werden muss. So komme ich aber auf ein anderes Ergebnis.

Bezug
                                                
Bezug
Gleichungen und Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Do 14.03.2013
Autor: schachuzipus

Hallo nochmal,


> Hallo nochmal,
>  müsste ich nicht beim ersten Schritt die Summanden in der
> Klammer mit lg(b) multiplizieren?

In welchem "ersten" Schritt?

> Ich meine mich erinnern
> zu können, dass jeder Summand multipliziert werden muss.

Hier hast du doch die hintere (eckige) Klammer nicht ausmultipliziert, sondern das vordere [mm] $\lg(b)$ [/mm] rübermultipliziert. Das war doch ein guter Schritt ...

> So komme ich aber auf ein anderes Ergebnis.

Dann rechne mal vor, was du genau meinst, nicht, dass wir aneinander vorbei reden ...

Gruß

schachuzipus


Bezug
                                        
Bezug
Gleichungen und Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Do 14.03.2013
Autor: schachuzipus

Hallo nochmal,


> Hi,
>  danke für deine Antwort. Damit wird das schon
> übersichtlicher.

Indeed!

>  Um die Gleichung nun zu lösen, möchte ich lg(b) alleine
> stehen lassen und multipliziere mit jenem.
>  
> 4 * lg(b) = 2 * [ 1 +  lg(b) ]
>
> 4 * lg(b) = 2 + 2 * lg(b)
>  
> 2 * lg(b) = 2
>  
> lg(b) = 1
>  
> b = 10 [ok]
>  
> Super, das hat geklappt. Jedoch sieht die Aufgabe leichter
> aus als sie ist.


Na, es geht, wenn man sich nur immer an die Rechenregeln erinnert ;-)

Gruß

schachuzipus


Bezug
                
Bezug
Gleichungen und Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Mi 13.03.2013
Autor: abakus


> Hallo derluxe und herzlich [willkommenmr],
>  
> wir freuen uns immer über ein kleines nettes "Hallo" zu
> Beginn.
>  
> Das erhöht erfahrungsgemäß auch die Antwortbereitschaft
> immens ...
>  
>
> > Wie müssen die Koeffizienten a und b der Funktion y = a *
> > lg(bx) lauten, wenn die Funktionskurve durch die Punkte
> > (1;2) und (10;4) verlaufen soll?
>  >  Zu dieser Aufgabe habe ich erst ein Lösungsansatz
> > gefunden. Ich würde zuerst zwei Funktionen aufstellen:
>  >  
> > 2 = a * lg(b)
>  >  4 = a * lg(10b) [ok]
>  >  
> > Nun kann man einen nach einer Variablen umstellen und in
> > die andere einsetzen:
>  >  
> > 2  / lg(b) = a
>  >  4 = (2 / lg(b)) * lg(10b) [ok]

Man könnte an der Stelle auf [mm]\bruch{\lg10b}{\lg b}[/mm] auch den Basiswechselsatz loslassen.
Gruß Abakus

>  >  
> > Wie rechne ich jetzt die Variable b aus?
>  
> Du brauchst die Logarithmusgesetze: [mm]\lg(xy)=\lg(x)+\lg(y)[/mm]
> und [mm]\lg(10)=...[/mm]
>  
> M.E. ist es geschickter, statt zuerst nach a aufzulösen,
> dieses Logarithmusgesetz zuerst mal auf die zweite
> Gleichung anzuwenden. Da wirst du die erste Gleichung
> wiederfinden ....
>  
> >  

> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>
> Gruß
>  
> schachuzipus
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]