www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Gleichungssystem
Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 So 12.11.2006
Autor: Klausi

Aufgabe
Untersuchen Sie a) für [mm] K=\IR, [/mm] b) für [mm] K=\IF_{2}, [/mm] ob ein lineares GS mit 2 Gleichungen in 3 Unbekannten über K eine Lösungsmenge mit genau 4 Elementen haben kann. (Jeweils müssen Sie ein Beispiel eines solchen Systems angeben oder die Unmöglichkeit begründen

Sei A [mm] \in K^{m x n}, [/mm] W:=Lös(A,0) und b [mm] \in K^{m x 1} [/mm] . Zeigen Sie:
a) Die Addition in [mm] K^{n x 1} [/mm] liefert auf W eine Verknüpfung, mit der W eine abelsche Gruppe ist. Ferner gilt [mm] \lambda [/mm] x [mm] \in [/mm] W für alle [mm] \lambda \in [/mm] K, [mm] x\in [/mm] W.

b) Ist Ax=b lösbar, so gilt für jedes (feste) v [mm] \in [/mm] Lös(A,b):
Lös(A,b) = v+W(:={v+w l w [mm] \in [/mm] W})

Hallo,

kann mir bitte jemand bei diesen Aufgaben helfen, hab echt keinen Plan wie ich da ran gehen soll??

Vielen Dank schon mal im voraus

        
Bezug
Gleichungssystem: 2.Teil
Status: (Antwort) fertig Status 
Datum: 15:10 So 12.11.2006
Autor: otto.euler

Seien [mm] w_1 [/mm] und [mm] w_2 [/mm] aus W. Dann gilt [mm] A(w_1+w_2) [/mm] = [mm] Aw_1+Aw_2 [/mm] = 0+0 = 0, also ist W abgeschlossen. Das Assoziativgesetz und das Kommutativgesezt gelten, da sie in [mm] K^{nxl} [/mm] gelten. Das neutrale Element 0 ist in W, da trivialerweise A0=0. Weiterhin A(-w) = -Aw = -0 = 0, also gibt es auch inverse.
Ebenso [mm] A(\lambdaw) [/mm] = [mm] \lambdaAw [/mm] = [mm] \lambda0 [/mm] = 0.

Sei [mm] v_0 [/mm] eine feste Lösung von Ax = b und v eine beliebige Lösung. Dann gilt [mm] A(v-v_0) [/mm] = Av - [mm] Av_0 [/mm] = b - b = 0, also v = [mm] v_0 [/mm] + w mit [mm] w\inW [/mm] geeignet.

Bezug
        
Bezug
Gleichungssystem: 1.Teil
Status: (Antwort) fertig Status 
Datum: 15:22 So 12.11.2006
Autor: otto.euler

Wegen des zweiten Teils genügt es den Kern der Abbildung (d.h. W) zu betrachten. Sei [mm] w\inW [/mm] mit [mm] w\not=0. [/mm] Dann sind alle [mm] \lambdaw\inW [/mm] mit [mm] \lambda\inK. [/mm] Für [mm] K=\IR [/mm] sind das unendlich viele.

Für [mm] K=\IF_{2} [/mm] wähle A = [mm] \pmat{ 0 & 0 & 1 \\ 0 & 0 & 1 }. [/mm] Der Kern W besteht aus W = [mm] {\vektor{0 \\ 0 \\ 0}; \vektor{1 \\ 0 \\ 0}; \vektor{0 \\ 1 \\ 0}; \vektor{1 \\ 1 \\ 0}}. [/mm]




1. Neuer Teil:

Die Lösungsmenge von Ax=b ist entweder leer oder genauso mächtig wie die Lösungsmenge von Ax=0. Diese Behauptung folgt unmittelbar aus dem zweiten Teil der Aufgabe.

Deshalb genügt es für den ersten Teil der Aufgabe nur die Lösungsmenge von Ax=0 zu betrachten.

Sei [mm] w\not=0 [/mm] eine Lösung von Ax=0. Dann sind auch alle [mm] \lambda [/mm] * w Lösungen von Ax=0, wobei [mm] \lambda \in [/mm] K. Das ist eine weitere Aussage, die aus dem zweiten Teil der Aufgabe folgt.

Ist [mm] K=\IR, [/mm] so ist [mm] {\lambda * w | \lambda \in \IR} [/mm] ja wohl offensichtlich eine Menge, die mehr als vier Elemente hat. Damit ist in diesem Fall die Behauptung im ersten Teil der Aufgabe widerlegt.

Ist [mm] K=\IF_{2}, [/mm] so habe ich eine Matrix A angegeben, für die der Lösungsraum von Ax=0 aus genau vier Elementen besteht. Der Lösungsraum von
[mm] \pmat{ 0 & 0 & 1 \\ 0 & 0 & 1 } [/mm] * [mm] (x_1, x_2, x_3) [/mm] = (0,0)
ist nämlich der angegebene
W = {(0,0,0); (1,0,0); (0,1,0); (1,1,0)}.

Bestehen noch Fragen?


2. Neuer Teil:
[mm] \pmat{ 0 & 0 & 1 \\ 0 & 0 & 1 } [/mm] * [mm] (x_1, x_2, x_3) [/mm] = (0,0)
Wenn man den linken Teil ausmultipliziert, erhält man [mm] (x_3, x_3). [/mm] Folglich besteht die Lösungsmenge aus allen Vektoren [mm] (x_1, x_2, x_3) [/mm] mit [mm] x_i\inK [/mm] und [mm] x_3=0. [/mm]
Nun ist [mm] K=\IF_{2}={0;1}. [/mm]
Wie sehen also alle Vektoren [mm] (x_1, x_2, x_3) [/mm] mit [mm] x_i\in{0;1} [/mm] und [mm] x_3=0 [/mm] aus? Das sind die vier von mir angegebenen in W.

Bezug
                
Bezug
Gleichungssystem: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 So 12.11.2006
Autor: studiinnot

Wie kommst du darauf ??

Und zu K = [mm] \IR [/mm] Könntest das nochmal erläutern, ich verstehe die aufgabe leider immer noch nicht :(

Bezug
                        
Bezug
Gleichungssystem: V1
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Mo 13.11.2006
Autor: otto.euler

siehe neue Version

Bezug
                                
Bezug
Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Mo 13.11.2006
Autor: studiinnot

Wie kommst du auf W= {(0,0,0);(1,0,0);(0,1,0);(1,1,0)} ???

A ist ja gewählt, das ist klar !!! Multiplizierst du mit b, oder wie ???

Bezug
                
Bezug
Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:37 So 12.11.2006
Autor: Klausi

danke für deine Hilfe aber irgendwie check ich das ganze noch nicht so

Bezug
                        
Bezug
Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:20 Di 14.11.2006
Autor: studiinnot

Aufgabe
Ist K= [mm] \IR [/mm] so ist [mm] \lambda [/mm] * w |  [mm] \lambda \in \IR [/mm]  ja wohl offensichtlich eine Menge, die mehr als vier Elemente hat. Damit ist in diesem Fall die Behauptung im ersten Teil der Aufgabe widerlegt.

Das kapiere ich noch nicht !! Kann mir das einer erläutern ???

Bezug
                                
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Di 14.11.2006
Autor: otto.euler

Aus [mm] \lambda_1*w [/mm] = [mm] \lambda_2*w [/mm] folgt 0 = [mm] (\lambda_2-\lambda_1) [/mm] *w und daraus w=0 (was ausgeschlossen wurde) oder 0 = [mm] \lambda_2-\lambda_1, [/mm] also [mm] \lambda_2 [/mm] = [mm] \lambda_1. [/mm]

Das bedeutet alle [mm] \lambda*w [/mm] sind für verschiedene [mm] \lambda [/mm] verschiedene Vektoren. Da [mm] \IR [/mm] unendlich ist, ist also auch [mm] {\lambda*w | \lambda\in\IR, w\not=0} [/mm] unendlich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]