www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Gleichungssystem
Gleichungssystem < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:35 Mi 18.05.2011
Autor: yonca

Hallo,

ich habe mal ne Frage. Bin gerade auf zwei Gleichungen gestoßen mit jeweils zwei Unbekannten. Ich habe mir dann gedacht, dass man die ja auflösen könnte, da ja Anzahl der Gleichungen gleich der Anzahl der Unbekannten ist. Habe das dann aber versucht und bin nicht weiter gekommen. Ich poste hier mal die beiden Gleichungen:

   [mm] x^2 [/mm] - [mm] y^2 [/mm] = 16   und 2xy = 25

Kann mir jemand vielleicht sagen, ob und wenn ja, nach welchem Prinzip ich diese Gleichungen lösen kann?!

Lieben Gruß,
Yonca

        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Mi 18.05.2011
Autor: Diophant

Hallo,

das geht hier sehr einfach: die zweite Gleichung nach einer Variablen auflösen, das ganze in die erste einsetzen. Das ergibt eine biquadratische Gleichung, die man mittels Substitutio und anschließend Mitternachtsformel löst.

Gruß, Diophant

Bezug
                
Bezug
Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 Mi 18.05.2011
Autor: yonca

Hallo nochmal,

komme nicht ganz klar.

> Hallo,
>  
> das geht hier sehr einfach: die zweite Gleichung nach einer
> Variablen auflösen, das ganze in die erste einsetzen. Das
> ergibt eine biquadratische Gleichung,

ich komme wenn ich die erste umstelle und in die erste Gleichung einsetze auf [mm] x^2 [/mm] - [mm] \bruch{625}{4x^2} [/mm] = 16. Da weiß ich dann nicht weiter, denn ich dachte eine biquadratische Gleichung hat die folgende Form: [mm] Ax^4 [/mm] + [mm] Bx^2 [/mm] + C = 0. Nun weiß ich nicht wie ich meine erhaltene Gleichung auf so eine Form bringen kann?

> die man mittels
> Substitutio und anschließend Mitternachtsformel löst.
>  
> Gruß, Diophant


Lieben Gruß, Y.

Bezug
                        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Mi 18.05.2011
Autor: fred97


> Hallo nochmal,
>  
> komme nicht ganz klar.
>  
> > Hallo,
>  >  
> > das geht hier sehr einfach: die zweite Gleichung nach einer
> > Variablen auflösen, das ganze in die erste einsetzen. Das
> > ergibt eine biquadratische Gleichung,
>  
> ich komme wenn ich die erste umstelle und in die erste
> Gleichung einsetze auf [mm]x^2[/mm] - [mm]\bruch{625}{4x^2}[/mm] = 16. Da
> weiß ich dann nicht weiter, denn ich dachte eine
> biquadratische Gleichung hat die folgende Form: [mm]Ax^4[/mm] + [mm]Bx^2[/mm]
> + C = 0. Nun weiß ich nicht wie ich meine erhaltene
> Gleichung auf so eine Form bringen kann?


Ich verrate Dir eine Methode, die außer mir niemand kennt:  mit [mm] x^2 [/mm] durchmultiplizieren.

FRED

>  
> > die man mittels
> > Substitutio und anschließend Mitternachtsformel löst.
>  >  
> > Gruß, Diophant
>
>
> Lieben Gruß, Y.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]