www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGlobale Extrema
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Globale Extrema
Globale Extrema < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Globale Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mo 27.09.2004
Autor: Alice

Hallo liebe Leute, ich möchte die globalen Extremwerte folgender Funktion in R+ bestimmen:

[mm]f(x)= x^{2}[/mm]

[mm]f'(x)=2x[/mm]
[mm]2x=0 \gdw x=0[/mm]

[mm]f(0)=0 \to[/mm] glob. Minimum

[mm] \limes_{x\rightarrow\infty}f(x)={x\rightarrow\infty} \to [/mm] glob. Maximum

Ich hab das aber noch nicht so oft gemacht und bin deswegen ein bisschen unsicher. Wenn kein Intervall gegeben ist, dessen Randpunkte man einbeziehen kann, dann berechnet man ja die Grenzwerte der Funktion, sowie die stationären Punkte, die sich durch nullsetzen der ersten Ableitung ergeben. Muss ich auch den unteren Grenzwert noch berechnen? Oder ist das wegen f(0)=0 hinfällig?

Falls ich etwas falsch gemacht habe, würde ich mich über eine (möglichst ausführliche) Erklärung sehr freuen!! :-)

Vielen Dank schonmal!

        
Bezug
Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mo 27.09.2004
Autor: Paulus

Hallo Alice

> Hallo liebe Leute, ich möchte die globalen Extremwerte
> folgender Funktion in R+ bestimmen:
>  
> [mm]f(x)= x^{2}[/mm]
>  
> [mm]f'(x)=2x[/mm]
>  [mm]2x=0 \gdw x=0[/mm]
>  
> [mm]f(0)=0 \to[/mm] glob. Minimum
>  

Hier sollte man vermutlich noch begründen, warum es sich nicht nur um ein lokales Minimum handelt!

Ein globales Minimum ist ja dadurch gegeben, dass der Funktionswert an jeder anderen Stelle [mm] $\ge$ [/mm] dem bestimmten Minimun ist. Das sollte man noch formal tun.

> [mm]\limes_{x\rightarrow\infty}f(x)={x\rightarrow\infty} \to[/mm]
> glob. Maximum
>  

Wie gross ist denn jetzt das Globale Maximum. An welcher Stelle wird es angenommen?

Beachte bitte, dass [mm] $\infty$ [/mm] keine reele Zahl ist.

Es wird dir somit nicht gelingen, eine Stelle [mm] $x_{0}$ [/mm] zu finden, wo du dann behaupten kannst: jeder Funktionswert für $x [mm] \ne x_{0}$ [/mm] sei [mm] $\le f(x_{0})$. [/mm]

Die Funktion besitzt somit kein Globales Maximum.

Das wäre in der Tat anders, falls die Funktion auf eine echte Teilmenge von [mm] $\matbb{R}$ [/mm] eingeschränkt wäre, unter der Voraussetzung, dass $x$ nicht über alle Grenzen wächst (nach oben und nach unten) und abgeschlossen ist. Die Bedingung müsste man vielleich noch etwas exakter formulieren, aber ich denke, du weisst schon, was ich meine. Wir wollen nicht allzu mathematisch kleinlich sein! :-)

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]