www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGlobale Extrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Globale Extrema
Globale Extrema < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Globale Extrema: Vorgehensweise
Status: (Frage) beantwortet Status 
Datum: 20:24 Mo 01.07.2013
Autor: poeddl

Aufgabe
Bestimme globale Extrema

Hallo,

kann mir von euch eventuell jemand die allgemeine Herangehensweise erläutern, wie ich globale Extrema finde?

Lokale finde ich ja mit der ersten Ableitung, welche ich null setze.
Die gefundenen Extremwerte setze ich dann in die zweite Ableitung ein, um zu sehen, ob es sich um einen lokalen Hoch- oder Tiefpunkt handelt.

Wie finde ich nun aber globale Extremstellen?
Und worauf muss ich achten, wenn der Definitionsbereich ein offenes / halboffenes / geschlossenes Intervall ist?

Ich hoffe, irgendjemand erklärt sich bereit mir das zu erklären.
Das wäre wirklich super nett!

Vielen Dank für eure Hilfe

        
Bezug
Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Mo 01.07.2013
Autor: Thomas_Aut

Hallo

> Bestimme globale Extrema
>  Hallo,
>  
> kann mir von euch eventuell jemand die allgemeine
> Herangehensweise erläutern, wie ich globale Extrema
> finde?
>  
> Lokale finde ich ja mit der ersten Ableitung, welche ich
> null setze.

Ja falls du dich auf einer offenen Menge bewegst - sonst müsstest du mögliche Randextrema auch betrachten.

>  Die gefundenen Extremwerte setze ich dann in die zweite
> Ableitung ein, um zu sehen, ob es sich um einen lokalen
> Hoch- oder Tiefpunkt handelt.

Ja das stimmt - sofern du eindimensionale Funktionen behandelst. Ansonsten würdest du die Hesse Matrix bilden und dich aufgrund ihrer Definitheit von Min, Max überzeugen.

>  
> Wie finde ich nun aber globale Extremstellen?

Es gibt hierfür nicht immer Kochrezepte - das kommt ganz auf deine Funktion an. Eine Möglichkeit wäre zz dass zb f(x) [mm] \le [/mm] Max [mm] \ge [/mm] Min ist. und zwar für alle x.

> Und worauf muss ich achten, wenn der Definitionsbereich ein
> offenes / halboffenes / geschlossenes Intervall ist?

Hab ich oben schon erklärt:
AUf einem offenen Intervall sind die Extrema tatsächlich Nullstellen der ersten Ableitung. Auf einem abgeschlossenen musst du die Randpunkte des Intervalls extra untersuchen. Auf einem halboffenen musst du demnach einen Randpunkt extra untersuchen.

>  
> Ich hoffe, irgendjemand erklärt sich bereit mir das zu
> erklären.
>  Das wäre wirklich super nett!
>  
> Vielen Dank für eure Hilfe

Gruß

Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]