www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGlobale Umkehrbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Globale Umkehrbarkeit
Globale Umkehrbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Globale Umkehrbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Fr 04.11.2005
Autor: Lenchen27

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie überprüfe ich, ob eine Funktion f global invertierbar? Soll sie  lokal invertierbar sein UND bijektiv? Oder reicht es zu zeigen, dass die Funktion f bijektiv ist und deswegen existiert  eine Umkehrabbildung  und deswegen die Funktion f global invertierbar ist?


        
Bezug
Globale Umkehrbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Fr 04.11.2005
Autor: angela.h.b.


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Wie überprüfe ich, ob eine Funktion f global invertierbar?
> Soll sie  lokal invertierbar sein UND bijektiv? Oder reicht
> es zu zeigen, dass die Funktion f bijektiv ist und deswegen
> existiert  eine Umkehrabbildung  und deswegen die Funktion
> f global invertierbar ist?
>  

Hallo,
genau dann, wenn Dein f: A-->B bijektiv ist, gibt es eine Abb. g: B-->A mit f [mm] \circ [/mm] g [mm] id_B. [/mm]

Gruß v. Angela



Bezug
                
Bezug
Globale Umkehrbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Fr 04.11.2005
Autor: Lenchen27

Also, wie ich dannverstehe: Eine Funktion ist genau dann global invertierbar, wenn sie bijektiv ist?

Bezug
                        
Bezug
Globale Umkehrbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Fr 04.11.2005
Autor: angela.h.b.

Ja.

Globale Umkehrbarkeit bedeutet doch: auf ganz B umkehrbar. Und nicht etwa nur auf einer Teilmenge von B.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]