www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient
Gradient < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Di 31.07.2007
Autor: magic1980

Aufgabe
Bestimme den Gradienten im Punkt [mm]P_{0}=(1,1)[/mm] für die Funktion [mm]f(x,y)=3x^{2}+4y^{2} + 5[/mm] und gehe einen Schritt in Richtung des Gradienten und rechne den neuen Punkt aus.

Die Aufgabe ist jetzt nicht exakt aus einem Buch, oder einer Aufgabensammlung abgeschrieben. Aber mich würde interessieren, wie ich hier zu einer Lösung komme?
Also den Gradienten bekomme ich, indem ich die partiellen Ableitungen nach x und nach y bilde und als Spaltenvektor aufschreibe. Dort muss ich dann noch den Punkt [mm]P_{0}[/mm] einsetzen und habe meinen Gradienten.

[mm]gradf(x,y)=\vektor{6x \\ 8y}[/mm]
[mm]gradf(1,1)=\vektor{6 \\ 8}[/mm]

Aber wie gehe ich jetzt weiter vor, um zu dem neuen Punkt zu gelangen?

Vielen Dank schonmal für die Bemühungen


Gruß

Volker

        
Bezug
Gradient: Vektor normieren
Status: (Antwort) fertig Status 
Datum: 17:22 Di 31.07.2007
Autor: Loddar

Hallo Volker!


Welche Länge hat denn der Vektor des errechneten Gradienten? Diesen musst Du dann durch Teilen durch die Länge normieren.

Und diesen Vektor dann an den betrachteten Punkt $P \ [mm] \left( \ 1 \ | \ 1 \ | \ 12 \ \right)$ [/mm] "anhängen".


Gruß
Loddar


Bezug
                
Bezug
Gradient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 31.07.2007
Autor: magic1980

Wow das ging ja schnell. Also die Länge des Gradienten bestimme ich durch [mm]\wurzel{6^{2}+8^{2}}=10[/mm]
Dann ist der normierte Gradient [mm] \vektor{0.6 \\ 0.8} [/mm] und der neue Punkt, wenn ich einen Schritt in Richtung des Gradienten gehe [mm]Q(1.6|1.8|25.64)[/mm]?

Bezug
                        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Di 31.07.2007
Autor: Hund

Hallo,

wenn ich die Aufgabe richtig verstanden habe, würde ich sagen, das ist richtig.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                                
Bezug
Gradient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:03 Do 02.08.2007
Autor: magic1980

Wenn die Lösung stimmt, hab ich es verstanden.
Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]