www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradient/Satz von Gauss
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient/Satz von Gauss
Gradient/Satz von Gauss < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient/Satz von Gauss: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:59 Di 26.08.2008
Autor: FrankM

Aufgabe
Zeigen Sie:

[mm] \limes_{t\rightarrow 0}\vec{n_s} \cdot \nabla \left(\bruch{1}{|\vec{s}+t*\vec{n_s}-\vec{s'}|}\right)=-\bruch{\vec{n_s}\cdot (\vec{s}-\vec{s'})}{|\vec{s}-\vec{s'}|^3}-2 \pi \delta(\vec{s}-\vec{s'}) [/mm]
dabei sind [mm] \vec{s} [/mm] und [mm] \vec{s'} [/mm] Punkte auf einer Oberfläche und [mm] \vec{n_s} [/mm] ist der Normalenvektor an den Punkt [mm] \vec{s}. [/mm]

Hinweis: Satz von Gauß

Hallo,

da man ja schon eine Form Normalenvektor mal Vektorfeld, in diesem Fall Gradient hat, denke ich man soll ein Volumenintegral in ein Oberflächenintegral umwandeln, aber ich habe nicht so richtig eine Idee über welches Volumen ich überhaupt integrieren soll.

Es geht auch nur um den Fall [mm] \vec{s}=\vec{s'}, [/mm]  sonst brauch man ja auch den Satz von Gauß gar nicht, und kann den Gradient direkt ausrechnen.

Danke Frank

        
Bezug
Gradient/Satz von Gauss: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 So 31.08.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]