Graphen einer Abbildung angebe < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Geben sie für diejenigen der folgenden Mengen ,die den Graphen [mm] $G_{f}$ [/mm] einer Abbildung $f: [mm] \IR \to \IR$ [/mm] beschreiben,die zugehörige Abbildungsvroschrift $x [mm] \mapsto [/mm] f(x)$ an. Begründen sie in den anderen Fällen,warum es sich nicht um eine Abbildung handelt
$a) [mm] M_1 [/mm] := [mm] \{(q,q+r);q,r \in \IR\} \subset \IR \times \IR$
[/mm]
$b) [mm] M_2 [/mm] := [mm] \{(q,q+s);q, \in \IR\} \subset \IR \times \IR$ [/mm] für ein beliebiges ,aber festes $s [mm] \in \IR$
[/mm]
$c) [mm] M_3 [/mm] := [mm] \{(q+t,q);q, \in \IR\} \subset \IR \times \IR [/mm] $für ein beliebiges ,aber festes$ t [mm] \in \IR$
[/mm]
$d) [mm] M_4 [/mm] := [mm] \{(q+u,q+u);q, \in \IR\} \subset \IR \times \IR$ [/mm] für ein beliebiges ,aber festes $u [mm] \in \IR$ [/mm] |
ich hab keine ahnung wie ich das machen soll,kann jmd. mir einen weg zeigen? :/
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:54 Fr 24.04.2015 | Autor: | meili |
Hallo,
> Geben sie für diejenigen der folgenden Mengen ,die den
> Graphen [mm]G_{f}[/mm] einer Abbildung [mm]f: \IR \to \IR[/mm]
> beschreiben,die zugehörige Abbildungsvroschrift [mm]x \mapsto f(x)[/mm]
> an. Begründen sie in den anderen Fällen,warum es sich
> nicht um eine Abbildung handelt
>
> [mm]a) M_1 := \{(q,q+r);q,r \in \IR\} \subset \IR \times \IR[/mm]
>
> [mm]b) M_2 := \{(q,q+s);q, \in \IR\} \subset \IR \times \IR[/mm]
> für ein beliebiges ,aber festes [mm]s \in \IR[/mm]
>
> [mm]c) M_3 := \{(q+t,q);q, \in \IR\} \subset \IR \times \IR [/mm]für
> ein beliebiges ,aber festes[mm] t \in \IR[/mm]
>
>
> [mm]d) M_4 := \{(q+u,q+u);q, \in \IR\} \subset \IR \times \IR[/mm]
> für ein beliebiges ,aber festes [mm]u \in \IR[/mm]
> ich hab keine
> ahnung wie ich das machen soll,kann jmd. mir einen weg
> zeigen? :/
Angegeben sind Teilmengen von [mm] $\IR \times \IR$ [/mm] (Relationen).
Sie lassen sich dann als Graphen einer Funktion $f: [mm] \IR \to \IR$ [/mm] beschreiben,
wenn nur solche 2-Tuppel (q,p) vorkommen, bei dem es zu jedem q genau ein p gibt.
Siehe Definition Funktion
Hast du eine Vorstellung davon wie die Mengen [mm] $M_1, \ldots, M_4$ [/mm] "aussehen"?
Wenn nicht, versuche mit einigen Zahlenbeispielen die Mengen zu erkunden.
Falls die Menge, die Bedingung für eine Funktion erfüllt, versuche eine
Rechenvorschrift zu finden, mit der man die 2. Komponente aus der ersten
berechnen kann.
Gruß
meili
|
|
|
|
|
ich hab keine ahnung was ich machen soll...:/ fuck ich komm auf kein ergebnis:/
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:23 So 26.04.2015 | Autor: | leduart |
Hallo
erstmal M2 für r=3
du hast in der Ebene alle Punkte (x,x+3) kennst du jtzt die menge der Punkte, bezeichne die 2 te Koordinate mit y
M3 t=1.23 alle Punkte (x+1.23,x) kannst du die skizzieren.
fluchen ist immer schlecht, und uns anfluchen noch schlechter! also lass deine Wut an jemand anders aus und hau dir lieber selbst auf den Kopf. mal ein paar Zahlen für q einsetzen und festes s oder t würde besser sein. also auch posts genauer lesen und Ratschläge befolgen!
Gruß leduart
|
|
|
|