www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenGreen-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Green-Funktion
Green-Funktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Green-Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:01 Sa 30.06.2012
Autor: Unknown-Person

Ich möchte die Green-Funktion eines linearen Oszillators mit einer äußeren Kraft herausfinden.

Die Bewegungsgleichung ist, wie bekannt:

[mm] m\bruch{d^2}{dt^2}x(t)+kx(t)=\underbrace{(m\bruch{d^2}{dt^2}+k)}_{=D}*x(t)=f(t) [/mm]

wobei D der Differentialoperator und f(t) die äußere Kraft ist.

Weiter ist bei nur einem "Kick":

[mm] \delta(t-t')=D*G(t,t') [/mm]

Bei unendlich vielen Kicks, wie es ja bei einer Kraft f(t) ist, muss man das ja aufsummieren, deswegen ist:

[mm] f(t)=\integral_{-\infty}^{\infty}{dt'f(t')*\delta(t-t')} [/mm]

Also anstatt dem einen Kick

[mm] \delta(t-t')=D*G(t,t') [/mm]

nehme ich jetzt unendlich viele und ersetze die linke Seite durch f(T):

[mm] f(T)=D*G(t,t') [/mm]

[mm] \integral_{-\infty}^{\infty}{dTf(T)*\delta(t-T)}=D*G(t,t') [/mm]

(Großes T weil t' ja frei ist, und T am Integral gebunden ist, oder?)
Weiter würde ich G(t,t') durch die Fouriertransformation ersetzen:

[mm] G(t,t')=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{dw*g(w)*e^{iw(t-t')}} [/mm]

Ich setze das oben ein und erhalte:

[mm] \integral_{-\infty}^{\infty}{dTf(T)*\delta(t-T)}=D*\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{dw*g(w)*e^{iw(t-t')}} [/mm]

Das D kann ich ins Integral ziehen:

[mm] \integral_{-\infty}^{\infty}{dTf(T)*\delta(t-T)}=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{dw*g(w)*De^{iw(t-t')}} [/mm]

Ich wende den Differentialoperator auf die e-Funktion an (im konkreten Fall des Oszillators):

[mm] \integral_{-\infty}^{\infty}{dTf(T)*\delta(t-T)}=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{dw*g(w)*(-mw^2+k)e^{iw(t-t')}} [/mm]

Jetzt soll ich für drei verschiedene Kräfte die Green-Funktion berechnen:

[mm] f=f_0=const [/mm]

[mm]f=at[/mm]

[mm] f=f_0e^{-at} [/mm]

Da hackt es irgendwie:

Beispielsweise setze ich die erste Kraft ein:

[mm] \integral_{-\infty}^{\infty}{dTf_{0}*\delta(t-T)}=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{dw*g(w)*(-mw^2+k)e^{iw(t-t')}} [/mm]

Das [mm] f_0 [/mm] kann ich ja aus dem Integral ziehen:


[mm] f_{0}\integral_{-\infty}^{\infty}{dT*\delta(t-T)}=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{dw*g(w)*(-mw^2+k)e^{iw(t-t')}} [/mm]

Das Integral auf der linken Seite ist dann die Heaviside-Funktion:


[mm] f_{0}\Theta(t-t')}=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{dw*g(w)*(-mw^2+k)e^{iw(t-t')}} [/mm]

Ich will ja das g(w) herausfinden, aber ich weiß nicht, wie ich weiter machen soll. (Ist es überhaupt bis hier hin richtig?)

Danke für Hilfe!

        
Bezug
Green-Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 02.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]