Greensche Funktion, Potential < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 18:57 So 26.05.2013 | Autor: | link963 |
Aufgabe | Berechnen Sie für die folgenden Anordnungen die Greensche Funktion und das Potential jeweils in dem Teil des Raumes, in dem sich die Ladung befindet.
a) Eine Punktladung Q befindet sich in der Nähe zweier zueinander senkrechter, unendlich ausgedehnter, ideal leitender, geerdeter Ebenen.
b) Eine Punktladung Q befindet sich außerhalb einer ideal leitenden, geerdeten Halbkugelschale, die durch einen ebenfalls ideal leitenden, geerdeten, ebenen Boden abgeschlossen wird. |
Hallo,
a) um den Randbedingungen zu genügen habe ich drei Bildladungen an folgenden Orten platziert:
(Die Ladung Q befindet sich am Ort [mm] $r_Q=(x_0,y_0)$)
[/mm]
[mm] $r_{B,1} [/mm] = [mm] (x_0, -y_0) [/mm] $ mit $ [mm] Q_{B,1} [/mm] = -Q $ (Randbedingung für y=0)
[mm] $r_{B,2} [/mm] = [mm] (-x_0, y_0) [/mm] $ mit $ [mm] Q_{B,2} [/mm] = -Q $ (Randbedingung für x=0)
[mm] $r_{B,3} [/mm] = [mm] (-x_0, -y_0) [/mm] $ mit $ [mm] Q_{B,3} [/mm] = +Q $ (Randbedingung für y=x=0)
Die dazugehörige Greensche Funktion:
[mm] $G_D(r,r') [/mm] = [mm] \bruch{1}{|r-r'|}+\bruch{1}{|r+r'|}-\bruch{1}{|r-(-x',y')|}-\bruch{1}{|r-(x',-y')|} [/mm] $
und das Potential:
$ [mm] \phi(r) [/mm] = [mm] \bruch{1}{4\pi\epsilon_0}\integral_{V}^{}{G_D(r,r')*Q*\delta^2(r'-r_Q) d^2r} [/mm] = [mm] \bruch{Q}{4\pi\epsilon_0}(\bruch{1}{\wurzel{(x-x_0)^2+(y-y_0)^2}}+\bruch{1}{\wurzel{(x+x_0)^2+(y+y_0)^2}}-\bruch{1}{\wurzel{(x+x_0)^2+(y-y_0)^2}}-\bruch{1}{\wurzel{(x-x_0)^2+(y+y_0)^2}}) [/mm] $.
Test ergibt [mm] $\phi(x=0,y) [/mm] = [mm] \phi(x,y=0) [/mm] = [mm] \phi(x=0,y=0) [/mm] = 0 $.
In einem Buch habe ich allerdings für das Potential bei gleicher Anordnung folgendes gefunden:
$ [mm] \phi(r) [/mm] = [mm] -\bruch{Q}{2\pi\epsilon_0}[ln(C\wurzel{(x-x_0)^2+(y-y_0)^2})-ln(C\wurzel{(x-x_0)^2+(y+y_0)^2})+ln(C\wurzel{(x+x_0)^2+(y+y_0)^2})-ln(C\wurzel{(x+x_0)^2+(y-y_0)^2})] [/mm] $
Dort wurden auch die drei Spiegelladungen verwendet, allerdings ist der Lösungsweg nicht mit angegeben. Kann mir jemand sagen, wo der Hase im Pfeffer liegt?
b) Wir hatten in der Vorlesung schon als Beispiel die Metallkugelschale. Ist der Lösungsweg für die Halbkugelschale nicht äquivalent?
Also Ansatz $ [mm] G_D(r,r') [/mm] = [mm] \bruch{1}{|r-r'|} [/mm] + [mm] \bruch{\alpha}{|r-\beta r'|} [/mm] $. Was dann für $ [mm] G_D [/mm] = 0 $ auf dem Rand liefert [mm] $\alpha [/mm] = [mm] -\bruch{R}{|r'|} [/mm] $ und $ [mm] \beta [/mm] = [mm] \bruch{R^2}{|r'|^2} [/mm] $.
Viele Grüße
link963
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Di 28.05.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|