Greensche Funktion und P.G < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Hallo ich muss die Laplace bzw poissongleichung mithilfe der Greenschen Funktion präsentieren. |
Meine Frage ist b es eine Zeichnugn oder Bilder gibt wie man es anschaulicher machen kann die Präsentation. Da es nur aus Rechnung besteht
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:39 Mi 03.12.2014 | Autor: | Kroni |
Hallo,
Ziel ist ja, eine Lösung einer Differentialgleichung zu finden, deren Inhomogenität durch eine [mm] $\delta$-Funktion [/mm] gegeben ist.
Die erste Frage, die viele Leute haben werden, ist wahrscheinlich die Folgende: Warum ist es interessant zu wissen, was die Lösung einer Differentialgleichung ist, wenn die Inhomog. eine [mm] $\delta$-Funktion [/mm] ist?
Um das zu verstehen kann man das Superpositions-Prinzip für lineare DGL erklären. Dafür kannst Du z.B. ein paar Bilder zeigen.
Anschließend muss man verstehen, wie man jede beliebige Funktion $f(x)$ als eine Überlagerung von [mm] $\delta$-Funktionen [/mm] zerlegen kann. Auch dafür kannst Du evtl. ein Bild zeigen [z.B. erst allgemein ein Bild, das zeigt, dass man viele Funktionen als Überlagerung verschiedener anderer Funkionen darstellen kann. Anschließend dann z.B. die Zerlegung in ebene Wellen (aka Fourier-Transofrmation) und am Ende dann vlt. die Zerlegung in [mm] $\delta$-Funktionen].
[/mm]
Wenn man das dann "bildlich" begriffen hat, kann man das ja mit Hilfe einer kurzen Rechnung mathematisch beweisen und dann mit Hilfe der Greenschen Funktion eine spezielle Lösung einer DGL hinschreiben mit beliebiger Inhomogenität.
LG
Kroni
|
|
|
|