Grenzen eines mehrdimensionale < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:27 Mo 18.10.2004 | Autor: | lola |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo Ihr Mathe-Wunder! Vielleicht könnt Ihr mir die folgende Frage beantworten: Wie finde ich die Grenzen bei einem mehrdimensionalen Integral über ein bestimmtes Gebiet? Mein Gebiet lauetet wie folgt: [mm] G=x^2+y^2 [/mm] < 1, die "Funktion lautet: [mm] (2x^3-y^3, x^3+y^3). [/mm] Meiner Meinung nach sind die Grenzen -1 bis 1 und [mm] -\wurzel{1-y^2} [/mm] und [mm] +\wurzel{1-y^3}
[/mm]
Wenn ich jett weiterrechne komme ich aber leider auf ein falsches Ergebnis. Ihr seid meine letzte Hoffnung, also vielen Dank schonmal im vorraus :)
|
|
|
|
Hi.
Abgesehen davon, dass ich das Riemannintegral nur für reellwertige Funktionen kenne, würde ich hier einfach mal das Stichwort "Substitution" in den Raum werfen.
Auf Grund des Integrationsbereiches würde ich dabei
[mm] ${x\choose y}={r\cos \phi\choose r\sin\phi}$
[/mm]
wählen, probier' es doch mal damit.
Sollte sich die Integration einer [mm] $\mathbb{R}^2$-wertigen [/mm] Funktion ganz anders gestalten, kannst du meinen Vorschlag natürlich vergessen.
Gruß
Philipp
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:37 Mo 18.10.2004 | Autor: | lola |
Erstmal vielen Dank für den Hinweis. Ich befürchte nur, dass mir die Substitition speziell hierbei nicht hilft, da ich explizit die Grenzen für das Intergral für die Rechnung benötige. I.A. hast Du natürlich recht: Substituieren muss man hier später auf jeden Fall.
|
|
|
|
|
Hi nochmal.
Also ich denke schon, dass deine Grenzen richtig sind (vorausgesetzt, beim 2. Mal heißt es auch [mm] $\sqrt{1-y^2}$ [/mm] und nicht, wie du geschrieben hast, [mm] $\sqrt{1-y^3}$), [/mm] allerdings könnte ich mir vorstellen, dass du dir durch die von mir angegebene Substitution Arbeit sparst, da deine neuen Integrationsgrenzen dann einfach 0 und 1 bzw 0 und [mm] $2\pi$ [/mm] sind.
Was bekommst du denn heraus, dass du meinst, das Ergebnis sei falsch?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:21 Di 19.10.2004 | Autor: | lola |
Hallo,
ich hatte mich schlicht verrechnet (nach zwei Stunden habe ich den Fehler dann endlich gefunden!). Die Grenzen waren also richtig! Vielen Dank für Deine Hilfe.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:24 Di 19.10.2004 | Autor: | Marc |
Hallo lola,
> ich hatte mich schlicht verrechnet (nach zwei Stunden habe
> ich den Fehler dann endlich gefunden!). Die Grenzen waren
> also richtig! Vielen Dank für Deine Hilfe.
Schön, das freut mich.
Was ich aber noch fragen wollte: Wie habt Ihr denn das Integral von Funktionen [mm] $\IR^m\to\IR^n$ [/mm] eigentlich erklärt?
Entweder, ich habe etwas total vergessen, oder es ist mir ganz neu.
Viele Grüße,
Marc
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:19 Di 19.10.2004 | Autor: | Philipp-ER |
Hi marc.
Auch mir war das Riemannintegral nur für reellwertige Funktionen bekannt und zum Beispiel im Heuser steht auch nichts zum Integral einer Funktion
[mm] $f:\mathbb{R}^n\to \mathbb{R}^m$, [/mm] auf Nachfrage in einem Channel habe ich jedoch die Information erhalten, dass ein solches Integral einfach komponentenweise definiert ist.
Wenn also
[mm] $\bold{f}(\bold{x})=\begin{pmatrix}f_1(\bold{x})\\\vdots\\f_m(\bold{x}) \end{pmatrix}$
[/mm]
dann ist
[mm] $\int_B \bold{f}(\bold{x})\,\mbox{d}\bold{x}=\begin{pmatrix}\int_B f_1(\bold{x})\,\mbox{d}\bold{x}\\\vdots\\\int_B f_m(\bold{x})\,\mbox{d}\bold{x} \end{pmatrix}$
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:27 Di 19.10.2004 | Autor: | Marc |
Hallo Philipp,
> solches Integral einfach komponentenweise definiert ist.
> Wenn also
>
> [mm]\bold{f}(\bold{x})=\begin{pmatrix}f_1(\bold{x})\\\vdots\\f_m(\bold{x}) \end{pmatrix}[/mm]
>
> dann ist
> [mm]\int_B \bold{f}(\bold{x})\,\mbox{d}\bold{x}=\begin{pmatrix}\int_B f_1(\bold{x})\,\mbox{d}\bold{x}\\\vdots\\\int_B f_m(\bold{x})\,\mbox{d}\bold{x} \end{pmatrix}[/mm]
Ah so, danke.
Dann hat es also keine geometrische Bedeutung, dieses mehrdimensionale Integral, sondern ist nur eine parallele Integration mehrerer (reellwertiger) Funktionen gleichzeitig.
Viele Grüße,
Marc
|
|
|
|