www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGrenzen gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Grenzen gesucht
Grenzen gesucht < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzen gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Do 21.06.2012
Autor: lzaman

Aufgabe
Die Parabel mit der Gleichung [mm]y=x^2-1[/mm]  schließt im [mm]\IR^2[/mm] zwischen ihren Nullstellen mit der x-Achse das Flächenstück S ein. Berechnen Sie das Integral

[mm]\iint_{S} 14x^2\cdot x \ dx [/mm]


Hallo zusammen. Ich suche die Grenzen für mein Integral nach dy, könnt Ihr mir evtl. helfen?

Ich würde es mal so machen:

[mm]\iint_{S} 14x^2\cdot x \ dx = \integral_{-1}^{1}{\integral_{a}^{b} 14x^2\cdot y \ dy \ dx} [/mm]

Nun weiss ich aber nicht was ich für Die Grenzen a und b einsetzen soll.

Danke schon mal



        
Bezug
Grenzen gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Do 21.06.2012
Autor: Marcel

Hallo,

> Die Parabel mit der Gleichung [mm]y=x^2-1[/mm]  schließt im [mm]\IR^2[/mm]
> zwischen ihren Nullstellen mit der x-Achse das
> Flächenstück S ein. Berechnen Sie das Integral
>
> [mm]\iint_{S} 14x^2\cdot x \ dx[/mm]

> Nun weiss ich aber nicht was ich für Die Grenzen ...
> einsetzen soll.

die Nullstellen [mm] $x_{N_1},\;x_{N_2}$ [/mm] von [mm] $p(x):=x^2-1$ [/mm] ($x [mm] \in \IR$) [/mm] sind doch nun wirklich nicht so schwer zu bestimmen. Selbst, wenn man absolut nicht nachdenken will, rechnet man sie leicht (in unnötig komplizierter Weise) etwa mit der pq-Formel aus:
[mm] $x^2-1=0 \gdw x^2+p*x+(-1)=0\,,$ [/mm] dort ist also [mm] $p:=0\,$ [/mm] und [mm] $q:=-1\,$ [/mm] zu benutzen.
Ein wenig eleganter wird's mit [mm] $x^2-1=x^2-1^2=(x+1)*(x-1)\,.$ [/mm] Und natürlich kann man dann die Punkte [mm] $P_1:=(x_{N_1},\;p(x_{N_1}))=(x_{N_1},\;0)$ [/mm] und [mm] $P_2:=(x_{N_2},\;p(x_{N_2}))=(x_{N_2},\;0)$ [/mm] des Graphen von [mm] $p\,$ [/mm] damit angeben.

Gruß,
  Marcel

Bezug
                
Bezug
Grenzen gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Do 21.06.2012
Autor: lzaman

Hallo Marcel, die Grenzen für [mm] $x_1=1$ [/mm] und [mm] $x_2=-1$ [/mm] habe ich doch schon angegeben. Die Frage bezieht sich doch nur auf die Grenzen des Integrals nach dy.

Obere Grenze wird wohl [mm] $x^2-1$ [/mm] sein. Ich komme nur nicht auf die untere Grenze.

Danke


Bezug
                        
Bezug
Grenzen gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Do 21.06.2012
Autor: notinX

Hallo,

> Hallo Marcel, die Grenzen für [mm]x_1=1[/mm] und [mm]x_2=-1[/mm] habe ich
> doch schon angegeben. Die Frage bezieht sich doch nur auf
> die Grenzen des Integrals nach dy.
>
> Obere Grenze wird wohl [mm]x^2-1[/mm] sein. Ich komme nur nicht

nein, das ist die untere Grenze. Das Integrationsgebiet wird berandet durch die x-Achse und die Parabel und im Intervall [-1,1] liegt die Parabel unterhalb der x-Achse.


> auf
> die untere Grenze.

Wie wird dann wohl die obere Grenze lauten?

>
> Danke
>  

Gruß,

notinX

Bezug
                                
Bezug
Grenzen gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Do 21.06.2012
Autor: lzaman


etwa bei y=0?

Dort ist ja der Schnittpunkt der Parabel mit der Geraden oder?


Bezug
                                        
Bezug
Grenzen gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Do 21.06.2012
Autor: notinX


>
> etwa bei y=0?

Ja.

>  
> Dort ist ja der Schnittpunkt der Parabel mit der Geraden
> oder?

Ja, die Schnittpunkte liegen auf der x-Achse.

>  

Gruß,

notinX

Bezug
                                                
Bezug
Grenzen gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:58 Do 21.06.2012
Autor: lzaman



Super, jetzt kann ich das Integral lösen:

[mm] \iint_{S} 14x^2\cdot x \ dx = \integral_{-1}^{1}{\integral_{x^2-1}^{0} 14x^2\cdot y \ dy \ dx}= \integral_{-1}^{1} \left(7x^2y^2\bigg|_{x^2-1}^0\right) \ dx= 7 \cdot \integral_{-1}^{1}x^2-x^4 \ dx=7 \cdot \left(\dfrac{x^3}{3}-\dfrac{x^5}{5}\right) \bigg|_{-1}^1=\dfrac{28}{15} [/mm]

Ist das alles so korrekt?

Danke für eure Hilfe


Bezug
                                                        
Bezug
Grenzen gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 06:22 Fr 22.06.2012
Autor: fred97


>
>
> Super, jetzt kann ich das Integral lösen:
>  
> [mm]\iint_{S} 14x^2\cdot x \ dx = \integral_{-1}^{1}{\integral_{x^2-1}^{0} 14x^2\cdot y \ dy \ dx}= \integral_{-1}^{1} \left(7x^2y^2\bigg|_{x^2-1}^0\right) \ dx= 7 \cdot \integral_{-1}^{1}x^2-x^4 \ dx=7 \cdot \left(\dfrac{x^3}{3}-\dfrac{x^5}{5}\right) \bigg|_{-1}^1=\dfrac{28}{15} [/mm]
>  
> Ist das alles so korrekt?


Ja, aber was das [mm] $\iint_{S} 14x^2\cdot [/mm] x \ dx$ soll ist mir nicht klar.

FRED

>  
> Danke für eure Hilfe
>  


Bezug
                        
Bezug
Grenzen gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Do 21.06.2012
Autor: Marcel

Hallo,

> Hallo Marcel, die Grenzen für [mm]x_1=1[/mm] und [mm]x_2=-1[/mm] habe ich
> doch schon angegeben. Die Frage bezieht sich doch nur auf
> die Grenzen des Integrals nach dy.

sorry, da hab' ich einfach zu flüchtig gelesen. Ich mach' aus meiner Antwort mal eine Mitteilung!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]