www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Grenzwert ausrechnen
Status: (Frage) beantwortet Status 
Datum: 14:17 Do 08.09.2016
Autor: Pawcio

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hi,
Ich habe kleine Probleme bei dem Grenzwert von (1+1/4n)^(n/3)

Wie komme ich da auf e^(1/12)?

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Do 08.09.2016
Autor: Gonozal_IX

Hiho,

> Wie komme ich da auf e^(1/12)?

Gar nicht, der stimmt nämlich nicht…

offensichtlich gilt:

[mm] $\left(1 + \frac{1}{n}\right)^\frac{n}{3} [/mm] = [mm] \left(\left(1 + \frac{1}{n}\right)^n\right)^\frac{1}{3} [/mm] = [mm] \sqrt[3]{\left(1 + \frac{1}{n}\right)^n}$ [/mm]

Den Ausdruck unter der Wurzel, solltest du kennen…

Gruß,
Gono


Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Do 08.09.2016
Autor: Pawcio

Ich habe mich vertippt
Jetzt steht es richtig
Ich habe das mit e versucht aber leider gescheitert

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Do 08.09.2016
Autor: M.Rex

Hallo

Bedenke, dass:

[mm] \lim\limits_{n\to\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} [/mm]

Also in deinem Fall:

[mm] \left(1+\frac{1}{4n}\right)^{\frac{n}{3}} [/mm]
[mm] =\left(\left(1+\frac{\frac{1}{4}}{n}\right)^{n}\right)^{\frac{1}{3}} [/mm]

Nun lasse [mm] n\to\infty [/mm] laufen.

Marius
 

Bezug
                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Do 08.09.2016
Autor: Pawcio

Danke
Daran hab ich überhaupt nicht gedacht!

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Do 08.09.2016
Autor: Gonozal_IX

Hiho,

falls du den allgemeinen Fall von Marius noch nicht hattest, sondern nur [mm] $\left(1+\frac{1}{n}\right)^n \to [/mm] e$ so substituiere $m=4n$ und du erhältst…

$ [mm] \left(1+\frac{1}{4n}\right)^{\frac{n}{3}} [/mm] = [mm] \left(1+\frac{1}{m}\right)^{\frac{m}{12}} [/mm] = [mm] \sqrt[12]{ \left(1+\frac{1}{m}\right)^m}$ [/mm]

Und das kannst du leicht berechnen, für [mm] $m\to\infty$. [/mm]

Gruß,
Gono

Bezug
                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 08.09.2016
Autor: Pawcio

Danke!

Bezug
        
Bezug
Grenzwert: Klare Syntax ?
Status: (Antwort) fertig Status 
Datum: 20:56 Do 08.09.2016
Autor: Al-Chwarizmi


>  Ich habe kleine Probleme bei dem Grenzwert von
> (1+1/4n)^(n/3)

Und ich habe ein Problem dabei, diesen Term zu lesen !

Meinst du mit   1/4n   denn eigentlich  [mm] $\frac{1}{4}*n$ [/mm]
oder etwa  [mm] $\frac{1}{4*n}$ [/mm]  ??

Bevor solche Sachen geklärt sind, lohnt es sich nicht,
weiterzurechnen ...

LG  ,   Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]