www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Grenzwert
Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 So 24.02.2008
Autor: Nessi28

Aufgabe
[mm] $\limes_{x\rightarrow\infty} [/mm] (2- [mm] \bruch{x}{x^2-1})$ [/mm]

Hallo Leute:)
Ich übe momentan für eine Mathearbeit und weiß nicht wie ich bei dieser Aufgabe den Nenner;) am besten zerlegen kann, damit ich die Grenzwertgesetze besser anwenden kann???

lg
Nessi

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 So 24.02.2008
Autor: steppenhahn

Du brauchst eigentlich den Nenner nicht zerlegen.

Die vier Grenzwertsätze (zur Addition, Subtraktion, Multiplikation und Division) sind dir ja sicher bekannt.

Nun ist

  [mm] \limes_{x\rightarrow\infty}\left(2-\bruch{x}{x^{2}-1}\right) [/mm]

ja nach Grenzwertsätzen erst einmal

= [mm] \limes_{x\rightarrow\infty}\left(2\right) [/mm] - [mm] \limes_{x\rightarrow\infty}\left(\bruch{x}{x^{2}-1}\right) [/mm]

Der linke Summand ist einfach = 2, und beim rechten geht man nun folgendermaßen vor (Allgemein bei solchen Brüchen macht man das so):
Zunächst klammert man die höchste Potenz von x oben und unten aus:

= 2 - [mm] \limes_{x\rightarrow\infty}\left(\bruch{x^{2}*\left(\bruch{1}{x}\right)}{x^{2}*\left(1-\bruch{1}{x^{2}}\right)}\right) [/mm]

Nun kürzt du das weg und wendest den Grenzwertsatz der Division an:

= 2 - [mm] \limes_{x\rightarrow\infty}\left(\bruch{\bruch{1}{x}}{1-\bruch{1}{x^{2}}}\right) [/mm]

= 2 - [mm] \bruch{\limes_{x\rightarrow\infty}\left(\bruch{1}{x}\right)}{\limes_{x\rightarrow\infty}\left(1-\bruch{1}{x^{2}}\right)} [/mm]

Und Funkionen wie [mm] \bruch{1}{x} [/mm] und [mm] \bruch{1}{x^{2}} [/mm] gehen für x [mm] \to \infty [/mm] natürlich gegen 0, und deswegen ergibt sich:

= 2 - [mm] \bruch{\limes_{x\rightarrow\infty}\left(\bruch{1}{x}\right)}{\limes_{x\rightarrow\infty}\left(1-\bruch{1}{x^{2}}\right)} [/mm]

= 2 - [mm] \bruch{\limes_{x\rightarrow\infty}\left(\bruch{1}{x}\right)}{\limes_{x\rightarrow\infty}\left(1\right)-\limes_{x\rightarrow\infty}\left(\bruch{1}{x^{2}}\right)} [/mm]

= 2 - [mm] \bruch{0}{1-0} [/mm]

= 2 - 0

= 2.

Das war jetzt sehr ausführlich und kein Lehrer wird von dir verlangen das so zu lösen, aber nur zum Verständnis hab' ichs mal so gemacht.

Es gilt übrigens allgemein:
Wenn in einem Bruch im Zähler eine höhere Potenz von x als im Nenner steht, so geht der Bruch gegen [mm] \pm\infty [/mm] für x [mm] \to \infty; [/mm] Wenn in einem Bruch im Zähler eine kleinere Potenz von x als im Nenner steht, so geht der Bruch gegen 0 für x [mm] \to \infty [/mm] (Das war bei dir oben der Fall; im Zähler war die höchste Potenz von x 1, im Nenner die höchste Potenz von x 2).

Interessant wird's also meist erst, wenn im Nenner und im Zähler eine gleichhöchste Potenz von x existiert, z.B. [mm] \bruch{x^{2}-x}{1-x^{2}}. [/mm]

Dann ist der Grenzwert immer einfach der Quotient der Koeffizienten vor den höchsten Potenzen, also:

[mm] \bruch{x^{2}-x}{1-x^{2}} \to \bruch{1}{-1} [/mm] = -1

All das ergibt sich aus der oben für deine Aufgabe angewandten Regel. :-)

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 So 24.02.2008
Autor: Nessi28

hallo steppenhahn!
viel dank für dein ausführliche antwort. jetzt hab ich das endich richtig verstanden, wie das ganze funtioniert.
und deine allgemeine regel am ende werd ich mir jetzt auch zunutzen machen. ist mir noch nie aufgefallen, bzw. wurde uns das inner schule nie so erklärt.

ein dickes dankeschön^^
lg
Nessi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]