Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Hallo,
ich muss beweisen, dass der Grenzwert [mm] \limes_{x\rightarrow\infty}(\bruch{x^{k+1}}{-e^x}) [/mm] = 0 ist. |
Ich würde dafür eigentlich die Regel von l'Hospital anwenden, weil ich ja [mm] \bruch{\infty}{-\infty} [/mm] habe, bis ich dann nur noch (k+1)! im Zähler stehen habe.
Doch um l'Hospital anzuwenden muss ich doch wissen, dass der Grenzwert existiert, ich kenne es nur so, dass man den Beweis dann von hinten ausfschreibt, aber wie soll das gehen, soll ich dann integrieren??
Es wäre super, wenn mir jemand helfen kann.
Liebe Grüße
Mathefuchs
|
|
|
|
Hallo mathefuchs,
> Hallo,
>
> ich muss beweisen, dass der Grenzwert
> [mm]\limes_{x\rightarrow\infty}(\bruch{x^{k+1}}{-e^x})[/mm] = 0
> ist.
> Ich würde dafür eigentlich die Regel von l'Hospital
> anwenden, weil ich ja [mm]\bruch{\infty}{-\infty}[/mm] habe, bis ich
> dann nur noch (k+1)! im Zähler stehen habe.
jo
> Doch um l'Hospital anzuwenden muss ich doch wissen, dass
> der Grenzwert existiert, ich kenne es nur so, dass man den
> Beweis dann von hinten ausfschreibt, aber wie soll das
> gehen, soll ich dann integrieren??
Nein, nicht integrieren.
Du hast doch alles richtig angedacht.
Es ist die Vor. für de l'Hôpital erfüllt mit dem unbestimmten GW [mm] $\frac{\infty}{-\infty}$ [/mm] für [mm] $x\to\infty$
[/mm]
Nach der ersten Anwendung von de l'Hôpital kommst du auf [mm] $\frac{(k+1)x^k}{-e^x}$, [/mm] das geht für [mm] $x\to\infty$ [/mm] wieder gegen den unbestimmten Ausdruck [mm] $\frac{\infty}{-\infty}$, [/mm] prima, also wieder ran mit de l'Hôpital, wie du schon gesagt hast.
usw. usf.
Nach der (k+1)-ten Anwendung von de l'Hôpital kommst du auf [mm] $\frac{(k+1)!}{-e^x}$, [/mm] das hat nun einen bestimmten GW, nämlich [mm] $\frac{(k+1)!}{\infty}=0$
[/mm]
Also gilt [mm] $\red{0}=\lim\limits_{x\to\infty}\frac{(k+1)!}{-e^x}=\lim\limits_{x\to\infty}\frac{(k+1)\cdot{}k\cdot{}(k-1)\cdot{}....\cdot{}3\cdot{}2\cdot{}x}{-e^x}=\lim\limits_{x\to\infty}\frac{(k+1)\cdot{}k\cdot{}(k-1)\cdot{}....\cdot{}3\cdot{}x^2}{-e^x}=...=\lim\limits_{x\to\infty}\frac{(k+1)x^k}{-e^x}=\red{\lim\limits_{x\to\infty}\frac{x^{k+1}}{-e^x}}$
[/mm]
>
> Es wäre super, wenn mir jemand helfen kann.
> Liebe Grüße
> Mathefuchs
Also ein ganz richtiger Ansatz, nur nicht zu Ende geführt
LG
schachuzipus
|
|
|
|