www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Grenzwert
Grenzwert < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Mi 03.02.2010
Autor: DrNetwork

Aufgabe
[mm] \limes_{x\uparrow\frac{\pi}{2}}cos(x)^\left(x-\frac{\pi}{2}\right) [/mm]

Hi,

ich hab bei diesem Grenzwert totale Probleme das dreht sich immer im Kreis herum und ausserdem hab ich schon sehr wiedersprüchliche Ergebnisse mit l'Hospital bekommen (die ich in der Klausur einfach stehen gelassen hätte), wieso darf man ihn nicht anwenden und wie erkenne ich sowas? Das ist eine alte Klausur Aufgabe ich würde mich freuen falls noch jemand solche bösen Grenzwerte kennt die einfachen sind ja kein Problem.

[mm] \limes_{x\uparrow\frac{\pi}{2}}cos(x)^\left(x-\frac{\pi}{2}\right) [/mm] = [mm] \limes_{x\uparrow\frac{\pi}{2}}e^{\left(x-\frac{\pi}{2}\right)log(cos(x))} \Rightarrow \limes_{x\uparrow\frac{\pi}{2}}\left(x-\frac{\pi}{2}\right)log(cos(x)) [/mm]

Nun an der Stelle hab ich mehrere Dinge probiert ausklammern und GWS ergeben [mm] -\infty [/mm] + [mm] -\infty [/mm] wieso nicht das richtige Ergebnis?

Umformen in und danach l'Hhospital:
1.  [mm] \limes_{x\uparrow\frac{\pi}{2}}\frac{\left(x-\frac{\pi}{2}\right)}{\frac{1}{log(cos(x)}} [/mm]


2.  [mm] \limes_{x\uparrow\frac{\pi}{2}}\frac{log(cos(x)}{\frac{1}{\left(x-\frac{\pi}{2}\right)}} [/mm]

...nur quatsch. Mir ist nicht so wichtig wie die Aufgabe gelöst wird als mehr wie ich sowas erkenne um nicht viel Zeit zu verschwenden


        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 03.02.2010
Autor: abakus


>
> [mm]\limes_{x\uparrow\frac{\pi}{2}}cos(x)^\left(x-\frac{\pi}{2}\right)[/mm]

Hallo,
nach den Potenzgesetzen gilt
[mm] cos(x)^{x-\frac{\pi}{2}}=\frac{(cos(x))^x}{(cos(x))^\frac{\pi}{2}} [/mm]

Kannst du hier mit L'Hospital was anfangen?
Gruß Abakus

>  Hi,
>  
> ich hab bei diesem Grenzwert totale Probleme das dreht sich
> immer im Kreis herum und ausserdem hab ich schon sehr
> wiedersprüchliche Ergebnisse mit l'Hospital bekommen (die
> ich in der Klausur einfach stehen gelassen hätte), wieso
> darf man ihn nicht anwenden und wie erkenne ich sowas? Das
> ist eine alte Klausur Aufgabe ich würde mich freuen falls
> noch jemand solche bösen Grenzwerte kennt die einfachen
> sind ja kein Problem.
>  
> [mm]\limes_{x\uparrow\frac{\pi}{2}}cos(x)^\left(x-\frac{\pi}{2}\right)[/mm]
> =
> [mm]\limes_{x\uparrow\frac{\pi}{2}}e^{\left(x-\frac{\pi}{2}\right)log(cos(x))} \Rightarrow \limes_{x\uparrow\frac{\pi}{2}}\left(x-\frac{\pi}{2}\right)log(cos(x))[/mm]
>  
> Nun an der Stelle hab ich mehrere Dinge probiert
> ausklammern und GWS ergeben [mm]-\infty[/mm] + [mm]-\infty[/mm] wieso nicht
> das richtige Ergebnis?
>  
> Umformen in und danach l'Hhospital:
>  1.  
> [mm]\limes_{x\uparrow\frac{\pi}{2}}\frac{\left(x-\frac{\pi}{2}\right)}{\frac{1}{log(cos(x)}}[/mm]
>  
>
> 2.  
> [mm]\limes_{x\uparrow\frac{\pi}{2}}\frac{log(cos(x)}{\frac{1}{\left(x-\frac{\pi}{2}\right)}}[/mm]
>  
> ...nur quatsch. Mir ist nicht so wichtig wie die Aufgabe
> gelöst wird als mehr wie ich sowas erkenne um nicht viel
> Zeit zu verschwenden
>  


Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Fr 02.04.2010
Autor: qsxqsx

Hallo,

Ich wollt mal an der Stelle an-fragen, da ich mit Hospital nicht auf was brauchbares komme.

[mm] \bruch{cos(x)^{x}}{cos(x)^{\pi/2}} [/mm]

= [mm] \bruch{e^{x*ln(cos(x))}}{cos(x)^{\pi/2}} [/mm]

Hospital: --->

[mm] \bruch{e^{x*ln(cos(x))}*[ln(cos(x)) + x*\bruch{-sin(x)}{cos(x)}]}{cos(x)^{\pi/2-1}*\bruch{\pi}{2}*-sin(x)} [/mm]

Ich kann das mehrmals ableiten aber es wird nur immer schwieriger und der cos(x) im Nenner verschwindet nie.

Mein TI gibt das Ergebnis 1 für den Limes x gegen [mm] \bruch{\pi}{2}. [/mm] Nur wie komm ich darauf?

Frohe Ostern

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 01:27 Sa 03.04.2010
Autor: leduart

Hallo
ich hätte das in [mm] (-sin(y))^y [/mm] umgewandelt mit y gegen 0. dann L'Hopital  mit ln(sinx)/(1/x)
Gruss leduart

Bezug
                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Sa 03.04.2010
Autor: qsxqsx

Es hat funktioniert! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]