www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Grenzwert
Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:51 Sa 17.09.2011
Autor: Ferma

Guten Morgen,

der Grenzwert ist 3. Die Folge:
Wurzel(x+Wurzel(x+Wurzel(x)+........)
Wie beweist man das Ergebnis? Ich vermute x=6. Doch wie beweist man das?
Gruß Ferma

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Sa 17.09.2011
Autor: rainerS

Hallo Ferma!

> Guten Morgen,
>  
> der Grenzwert ist 3. Die Folge:
>  [mm]\wurzel{x+\wurzel{x+\wurzel{x+\dots}}} [/mm]
>  Wie beweist man das Ergebnis? Ich vermute x=6. Doch wie
> beweist man das?

Ich nehme an, du meinst die rekursiv definierte Folge

[mm] x_1 = x[/mm], [mm]x_{n+1} = \wurzel{x+x_n} [/mm] .

Und die Voraussetzung ist, dass diese Folge konvergiert, also [mm] $\limes_{n\to\infty} x_n [/mm] =a$ existiert.

Überlege mal: was passiert, wenn du in der Gleichung [mm]x_{n+1} = \wurzel{x+x_n} [/mm] auf beiden Seiten den Limes [mm] $n\to\infty$ [/mm] bildest:

[mm] a =\limes_{n\to\infty}x_{n+1}=\limes_{n\to\infty}\wurzel{x+x_n} = \dots [/mm]

Viele Grüße
   Rainer

Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Sa 17.09.2011
Autor: Ferma


Wenn der Ausdruck mit den Wurzeln gleichgesetzt wird mit 3,  wie groß muss dann x sein, damit die Gleichung stimmt? Wenn die linke Seite bis unendlich geführt wird, dann müsste x eigentlich kleiner sein als 1 oder?
Gruß Ferma

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 So 18.09.2011
Autor: Marcel

Hallo,

aus
[mm] $$a=\lim_{n \to \infty}x_n= \lim_{n \to \infty}x_{n+1}$$ [/mm]
und
[mm] $$\lim_{n \to \infty}\sqrt{x+x_n}=\sqrt{x+a}$$ [/mm]
würde mit
[mm] $$x_{n+1}=\sqrt{x+x_n}$$ [/mm]
bei $n [mm] \to \infty$ [/mm] folgen:

[mm] $$a=\sqrt{x+a}$$ [/mm]

(wegen der Stetigkeit der Wurzelfunktion!).

[mm] $\text{(}$Ganz [/mm] ausführlich: Wir schreiben abkürzend [mm] $\lim:=\lim_{n \to \infty}$: [/mm]
[mm] $$a=\lim x_{n+1}=\lim \sqrt{x+x_n}=\sqrt{\lim(x+x_n)}=\sqrt{(\lim x)+\lim x_n}=\sqrt{x+\lim x_n}=\sqrt{x+a}\,.\text{)}$$ [/mm]

Daraus folgte (quadrieren)
[mm] $$a^2-a-x=0$$ [/mm]
und damit wegen [mm] $a=3\,$ [/mm] in der Tat:
[mm] $$x=x_1=3^2-3=6\,.$$ [/mm]

Was hier aber vorausgesetzt wurde, und was noch zu beweisen wäre, ist, dass die von Rainer angegebene Folge überhaupt konvergiert!

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]