www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Grenzwert (1- e^(-2x))^(e^2x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Grenzwert (1- e^(-2x))^(e^2x)
Grenzwert (1- e^(-2x))^(e^2x) < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert (1- e^(-2x))^(e^2x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Di 22.04.2008
Autor: die_conny

Aufgabe
Berechnen sie die nachfolgenden Grenzwerte der Fznktionen!

(d) [mm] \limes_{x\rightarrow\infty} [/mm] [1 - e^(-2x)]^(e^(2x))

(c) [mm] \limes_{x\rightarrow\(1)} \bruch{ln(x)}{(x-1)^2} [/mm] (von links, also x<1)

Ich habe folgende Aufgaben zu lösen und komme bei den beiden noch nicht ganz zum ziel.

Also bei der (d) ist es mit den speziellen Grenzwertsätzen ja ganz einfach, dass gilt:

[mm] \limes_{x\rightarrow\infty} [/mm] [1 - e^(-2x)]^(e^(2x)) = [mm] \limes_{x\rightarrow\infty} [/mm] (1 - [mm] \bruch{1}{e^(2x)})^{e^(2x)} [/mm]
= 1/e nach speziellem Grenzwert (aus dem Tafelwerk)

Ich bin mir allerdings nicht sicher, ob wir das einfach so schreiben können. Hat vielleicht jemand eine Idee, wie man auf dieses 1/e auch durch "Berechnungen" kommen kann?
ich habe es mit bernoulli hospital versucht(unendlich durch unendlich), nachdem ich das ganze auf einen gemeinsamen nenner e^2x gebracht habe und dann das hoch e^2x jeweils beim nenner und zähler gesetzt habe, aber wenn ich dann bernoulli anwende, komme ich ja wieder auf unendlich durch unendlich, und das hilft mir ja nicht weiter...


und dann zur c):

[mm] \limes_{x\rightarrow\(1)} \bruch{ln(x)}{(x-1)^2} [/mm] = (bernoulli da 0/0 )  [mm] \limes_{x\rightarrow\(1)} \bruch{1/x}{2x-2} [/mm]
= [mm] \limes_{x\rightarrow\(1)} \bruch{1}{2x^2-2x} [/mm]

wenn ich nun 1 einsetze, steht ja da eigentlich 1:0. kann ich nun einfach schreiben, dass das unendlich ist, oder muss ich da noch weiter umformen, und wenn ja ,wie?

ich danke im voraus für die hilfe,

die_conny

        
Bezug
Grenzwert (1- e^(-2x))^(e^2x): Tipp für (d)
Status: (Antwort) fertig Status 
Datum: 15:26 Di 22.04.2008
Autor: Loddar

Hallo conny!


Substituiere hier mal $z \ := \ [mm] e^{2x}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Grenzwert (1- e^(-2x))^(e^2x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Di 22.04.2008
Autor: die_conny

danke für die schnelle antwort.

wie mache ich das denn, wenn ich bei grenzwerten substituiere? ich habe das noch nie gemacht. muss ich da etwas beachten (wie beim integrieren mit der ableitung)? wär nett, wenn du das mal kurz darstellen könntest.

danke, die_conny

Bezug
                        
Bezug
Grenzwert (1- e^(-2x))^(e^2x): Hinweis
Status: (Antwort) fertig Status 
Datum: 15:49 Di 22.04.2008
Autor: Loddar

Hallo Conny!


Bei der Substitution musst Du auch beachten, was mit Deiner Grenzwert"grenze" passiert.

Aber da [mm] $e^{2x}$ [/mm] für [mm] $x\rightarrow\infty$ [/mm] ebenfalls gegen [mm] $+\infty$ [/mm] strebt, gilt:

[mm] $$\limes_{x\rightarrow\infty}\left(1-e^{-2x}\right)^{e^{2x}} [/mm] \ [mm] \overset{\red{z \ := \ e^{2x}}}{=} [/mm] \ [mm] \limes_{z\rightarrow\infty}\left(1-\bruch{1}{z}\right)^z$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
Grenzwert (1- e^(-2x))^(e^2x): Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:01 Di 22.04.2008
Autor: die_conny

danke für die antwort!

aber jetzt steht ja im endeffekt auch wieder etwas da, worauf ich diesen speziellen grenzwertsatz anwenden würde. oder kann ich das jetzt auch anders machen? weil wenn ich jetzt bernoulli mache, ist es ja das selbe problem, nur dass dann hoch z-1 da steht...

vielen dank im voraus, die_conny

Bezug
                                        
Bezug
Grenzwert (1- e^(-2x))^(e^2x): bekannter Grenzwert
Status: (Antwort) fertig Status 
Datum: 17:06 Di 22.04.2008
Autor: Loddar

Hallo Conny!


Hattet ihr schon folgenden Grenzwert?

[mm] $$\limes_{n\rightarrow\infty}\left(1+\bruch{x}{n}\right)^n [/mm] \ = \ [mm] \exp(x) [/mm] \ = \ [mm] e^x$$ [/mm]

Gruß
Loddar


Bezug
                                                
Bezug
Grenzwert (1- e^(-2x))^(e^2x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Di 22.04.2008
Autor: die_conny

ah ja, den hatten wir schon, danke ;)

Bezug
        
Bezug
Grenzwert (1- e^(-2x))^(e^2x): zu Aufgabe (c)
Status: (Antwort) fertig Status 
Datum: 16:13 Di 22.04.2008
Autor: Loddar

Hallo Conny!


> wenn ich nun 1 einsetze, steht ja da eigentlich 1:0. kann
> ich nun einfach schreiben, dass das unendlich ist,

[ok] Du musst nur noch beachten, ob es gegen [mm] $-\infty$ [/mm] oder gegen [mm] $+\infty$ [/mm] strebt (es gilt ja $x \ < \ 1$ ).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]