www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwert Folgenkriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Grenzwert Folgenkriterium
Grenzwert Folgenkriterium < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Folgenkriterium: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:20 Di 07.12.2010
Autor: ella87

Aufgabe
Beweisen Sie mit dem Folgenkriterium, dass die Funktion [mm]f: D \to \IR[/mm] mit

[mm]f(x)=\left\{\begin{matrix} sin(\bruch{1}{x}), & \mbox{für }x \not= 0\\ 0, & \mbox{für }x=0 \end{matrix}\right\ [/mm]

in [mm]x_0 = 0[/mm] unstetig ist.

f stetig in [mm] x_0 [/mm] bedeutet, dass für jede Folge [mm] x_n \to x_0[/mm] auch [mm] f(x_n ) \to f(x_0 )[/mm] gilt.

1. Finde eine Folge mit [mm] \limes_{n\rightarrow\infty} x_n = x_0 [/mm]

wähle [mm]x_n = \bruch{1}{ \pi n + \bruch{1}{2} \pi} [/mm] Nullfolge (Bekannt aus der Vorlesung)


2. berechne [mm]f(x_n )[/mm]

[mm]f (x_n ) = sin (\bruch{1}{x_n }) = sin ( \pi n + \bruch{1}{2} \pi) = sin ( \pi n) cos (\bruch{1}{2}\pi) + sin (\bruch{1}{2}\pi) cos ( \pi n)[/mm]

[mm]sin ( \pi n) = 0 [/mm] haben wir per Induktion gezeigt
[mm]\Rightarrow sin ( \pi n) cos (\bruch{1}{2}\pi) = 0 [/mm]
[mm]sin (\bruch{1}{2}\pi) =1 [/mm]
und [mm]cos ( \pi n) \in \{-1,1\}[/mm] divergiert

also ist [mm]f (x_n )[/mm]nicht stetig in [mm]x_0[/mm]

kann man das so machen?
und kann man [mm]cos ( \pi n)[/mm] als [mm](-1)^n[/mm] schreiben?

Merci und liebe Grüße!

        
Bezug
Grenzwert Folgenkriterium: sieht gut aus
Status: (Antwort) fertig Status 
Datum: 19:30 Di 07.12.2010
Autor: Loddar

Hallo ella!


Sieht alles gut aus. Und auch Deine Darstellung für [mm] $\cos(\pi*n)$ [/mm] ist okay.


Gruß
Loddar


Bezug
                
Bezug
Grenzwert Folgenkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Di 07.12.2010
Autor: ella87

Danke für die schnelle Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]