www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationGrenzwert Wurzelfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Grenzwert Wurzelfunktion
Grenzwert Wurzelfunktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Wurzelfunktion: Bestimmung
Status: (Frage) beantwortet Status 
Datum: 09:26 Di 09.01.2007
Autor: steffenhst

Aufgabe
[mm] \limes_{x\rightarrow\infty} \wurzel[3]{6x^{2}-x^{3}} [/mm] + x

Hallo Mathefreunde,

ich habe mir übers WE den Kopf bei diesem Grenzwert zerbrochen und mir ist ehrlich gesagt nicht wirklich etwas eingefallen, wie man diesen bestimmen kann. Habt ihr vielleicht einen Tip für mich. [Wie man leicht sieht müsste -2 herauskommen]

Vielen Dank

Steffen

P.S. Habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Grenzwert Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Di 09.01.2007
Autor: Volker2

Hallo Steffen,

versuche mal [mm] t=\frac{1}{x} [/mm] gegen 0^+ laufen zu lassen. Weiter mit l'Hopital. Gruß Volker.

Bezug
        
Bezug
Grenzwert Wurzelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Di 09.01.2007
Autor: luis52

Moin,

ich verstehe die Aufgabenstellung nicht. Fuer $x=7.2$ ist der Radikand -62.208. Was ist [mm] $\sqrt[3]{-62.208}$? [/mm]



Bezug
                
Bezug
Grenzwert Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:10 Di 09.01.2007
Autor: statler


> Moin,
>  
> ich verstehe die Aufgabenstellung nicht. Fuer [mm]x=7.2[/mm] ist der
> Radikand -62.208. Was ist [mm]\sqrt[3]{-62.208}[/mm]?
>  

Auch moin!

Wer hat jetzt den Blackout? Das ist doch
-3,962313, oder bin ich 'neben de Kapp'?

Gruß aus HH-Harburg
Dieter



Bezug
                        
Bezug
Grenzwert Wurzelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 Di 09.01.2007
Autor: luis52


> > Moin,
>  >  
> > ich verstehe die Aufgabenstellung nicht. Fuer [mm]x=7.2[/mm] ist der
> > Radikand -62.208. Was ist [mm]\sqrt[3]{-62.208}[/mm]?
>  >  
> Auch moin!
>  
> Wer hat jetzt den Blackout? Das ist doch
>  -3,962313, oder bin ich 'neben de Kapp'?
>
> Gruß aus HH-Harburg
>  Dieter
>  
>  



Ich wuerde das so rechnen:

[mm]\sqrt[3]{-62.208}=(-62.208)^{1/3}=\exp[\ln(-62.208)/3][/mm] ...




Bezug
                                
Bezug
Grenzwert Wurzelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Di 09.01.2007
Autor: statler

Hallo Namensvetter (naja fast)!

> Ich wuerde das so rechnen:
>  
> [mm]\sqrt[3]{-62.208}=(-62.208)^{1/3}=\exp[\ln(-62.208)/3][/mm] ...

Das ist natürlich ein toller Ansatz, den der Taschenrechner aber nicht kann! Damit bekommst du (über die Theorie der Riemannschen Flächen oder so) 3 dritte Wurzeln, von denen eine reell ist. Aber glaub mir, so war die Aufgabe nie im Leben gemeint! Hier sind wir mit Sicherheit ausschließlich im Reellen unterwegs.

Ich wundere mich, daß die sonst so pragmatischen Statistiker sich hier das Leben so schwer machen :-).

Grüße nach Niedersachsen
Dieter


Bezug
                                        
Bezug
Grenzwert Wurzelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:10 Di 09.01.2007
Autor: luis52


> > Ich wuerde das so rechnen:
>  >  
> > [mm]\sqrt[3]{-62.208}=(-62.208)^{1/3}=\exp[\ln(-62.208)/3][/mm] ...
>  
> Das ist natürlich ein toller Ansatz, den der Taschenrechner
> aber nicht kann!

Die Aufgabe ist doch nicht mit dem Taschenrechner zu loesen, oder?  

>Damit bekommst du (über die Theorie der

> Riemannschen Flächen oder so) 3 dritte Wurzeln, von denen
> eine reell ist. Aber glaub mir, so war die Aufgabe nie im
> Leben gemeint! Hier sind wir mit Sicherheit ausschließlich
> im Reellen unterwegs.

Das vermute ich auch, aber meiner Ansicht sollte man ihn auf solche
Fallstricke hinweisen. Leider ist nicht ersichtlich, in welchem Rahmen er
die Aufgabe gestellt bekommen hat. Wenn das in einer Analysis-Vorlesung
der Fall war, so sollte er beim Dozenten auf einer Klaerung bestehen.
*Mir* ist [mm] $\sqrt[3]{a}$=-\sqrt[3]{|a|}$ [/mm] fuer [mm] $a\in\IR, [/mm] $a<0$, jedenfalls
nicht gelaeufig oder selbstverstaendlich.


>  
> Ich wundere mich, daß die sonst so pragmatischen
> Statistiker sich hier das Leben so schwer machen :-).

Wir sind eben eine verkannte Spezies... ;-)

>  
> Grüße nach Niedersachsen

Ebenfalls alles Gute nach HH


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]