www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwert berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Grenzwert berechnen
Grenzwert berechnen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Sa 08.02.2014
Autor: SturmGhost

Aufgabe
Berechnen Sie den Grenzwert: [mm] \limes_{n\rightarrow 0}(sin(|x|)^{\bruch{1}{|x|}}) [/mm]

[mm] \gdw \limes_{n\rightarrow 0}e^{\bruch{ln(sin(|x|))}{|x|}} [/mm]

Exponenten betrachten $  [mm] \limes_{n\rightarrow 0}\bruch{ln(sin(|x|))}{|x|}$ [/mm]

Wie läuft das jetzt mit dem Betrag? Muss ich nun betrachten:

1. $  [mm] \limes_{n\rightarrow 0}\bruch{ln(sin(x))}{x} [/mm] $ = [mm] \limes_{n\rightarrow 0}\bruch{ln(sin(x))}{x} [/mm]

2.  [mm] $\limes_{n\rightarrow 0}\bruch{ln(sin(-x))}{-x}$ [/mm]

oder wie funktioniert das mit Beträgen?

        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Sa 08.02.2014
Autor: abakus


> Berechnen Sie den Grenzwert: [mm]\limes_{n\rightarrow 0}(sin(|x|)^{\bruch{1}{|x|}})[/mm]

>

> [mm]\gdw \limes_{n\rightarrow 0}e^{\bruch{ln(sin(|x|))}{|x|}}[/mm]

>

> Exponenten betrachten [mm]\limes_{n\rightarrow 0}\bruch{ln(sin(|x|))}{|x|}[/mm]

>

> Wie läuft das jetzt mit dem Betrag? Muss ich nun
> betrachten:

>

> 1. [mm]\limes_{n\rightarrow 0}\bruch{ln(sin(x))}{x}[/mm] =
> [mm]\limes_{n\rightarrow 0}\bruch{ln(sin(x))}{x}[/mm]

>

> 2. [mm]\limes_{n\rightarrow 0}\bruch{ln(sin(-x))}{-x}[/mm]

>

> oder wie funktioniert das mit Beträgen?

Hallo,
mach es nicht so kompliziert.
Für die Funktion [mm] $f(x)=sin(|x|)^{\bruch{1}{|x|}}$ [/mm] gilt f(x)=f(-x).
Damit genügt die Betrachtung des Falls x>0.
Gruß Abakus

Bezug
                
Bezug
Grenzwert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Sa 08.02.2014
Autor: Sax

Hi,

diese Antwort trifft auch auf die Funktionen [mm] |sin(x)|^\bruch{1}{|x|} [/mm] und [mm] sin(|x|^\bruch{1}{|x|}) [/mm] zu.

Gruß Sax.

Bezug
                
Bezug
Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Sa 08.02.2014
Autor: SturmGhost

Hm, wie kommt man darauf? Einfach etwas einsetzen und feststellen das für x und -x jeweils das Gleiche herauskommt?

Bezug
                        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Sa 08.02.2014
Autor: abakus


> Hm, wie kommt man darauf? Einfach etwas einsetzen und
> feststellen das für x und -x jeweils das Gleiche
> herauskommt?

Grundwissen (seit du die Klasse 7 besucht hast): Der Betrag einer Zahl und der Betrag der dazu entgegengesetzten Zahl sind gleich.
Gruß Abakus

Bezug
                                
Bezug
Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Sa 08.02.2014
Autor: SturmGhost

Hm das weiß ich auch, kann ich aber auf die gegeben Funktion nicht anwenden...


Dann eben [mm] \limes_{x\rightarrow 0}\bruch{ln(sin(x))}{x} [/mm]

Jetzt L'Hospital?

[mm] \limes_{x\rightarrow 0}\bruch{\bruch{cos(x)}{sin(x)}}{1}=\limes_{x\rightarrow 0}cot(x) [/mm]

Und was ist das? [mm] -\infty? [/mm]

Also [mm] e^{-\infty}=0[/mm]

Bezug
                                        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Sa 08.02.2014
Autor: abakus


> Hm das weiß ich auch, kann ich aber auf die gegeben
> Funktion nicht anwenden...

>
>

> Dann eben [mm]\limes_{x\rightarrow 0}\bruch{ln(sin(x))}{x}[/mm]

>

> Jetzt L'Hospital?

>

> [mm]\limes_{x\rightarrow 0}\bruch{\bruch{cos(x)}{sin(x)}}{1}=\limes_{x\rightarrow 0}cot(x)[/mm]

>

> Und was ist das? [mm]-\infty?[/mm]

Wieso minus?
Wir waren gerade dabei, dass die Betrachtung der Annäherung an Null von der positiven Seite aus genügt.
Gruß Abakus
>

> Also [mm]e^{-\infty}=0[/mm]

Bezug
                                                
Bezug
Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Sa 08.02.2014
Autor: SturmGhost

Der cot(x) hat doch eine Polstelle bei x=0 diese geht in meiner Zeichnung im Skript gegen [mm] -\infty [/mm]

Edit: Okay von links betrachtet. Von rechts wäre er Null. Also [mm] e^0=1 [/mm] aber diese Lösung ist falsch.

Bezug
                                                        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Sa 08.02.2014
Autor: DieAcht


> Der cot(x) hat doch eine Polstelle bei x=0 diese geht in
> meiner Zeichnung im Skript gegen [mm]-\infty[/mm]
>  
> Edit: Okay von links betrachtet. Von rechts wäre er Null.
> Also [mm]e^0=1[/mm] aber diese Lösung ist falsch.  

Die Voraussetzung für L'Hôpital ist doch nicht erfüllt!

DieAcht

Bezug
                                                                
Bezug
Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Sa 08.02.2014
Autor: SturmGhost

Weil ln(0) nicht =0 ist sondern einfach nicht definiert oder warum nicht?

Wie mache ich das nun anders?

Bezug
                                                                        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Sa 08.02.2014
Autor: DieAcht

Hallo,


> Weil ln(0) nicht =0 ist sondern einfach nicht definiert
> oder warum nicht?

Du hattest doch folgendes für $x>0$ betrachtet:

      [mm] \limes_{x\rightarrow 0}\bruch{ln(sin(x))}{x} [/mm]

Dann hast du L'Hopital angewendet, aber das ist falsch, denn es gilt:

      [mm] \limes_{x\rightarrow 0}ln(sin(x))=-\infty [/mm] und [mm] \limes_{x\rightarrow 0}x=0 [/mm]

Damit war die Voraussetzung für L'Hôpital nicht erfüllt!

Überlege dir also einen neuen anderen Ansatz um folgendes zu zeigen:

      [mm] \limes_{x\rightarrow 0}sin(x)^{1/x}=0 [/mm]


DieAcht

Bezug
                                                                                
Bezug
Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Sa 08.02.2014
Autor: SturmGhost

Mir fällt neben dem Exponential-Ansatz nichts anderes ein. ;/

Bezug
                                                                                        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Sa 08.02.2014
Autor: DieAcht


> Mir fällt neben dem Exponential-Ansatz nichts anderes ein.

      [mm] $\sqrt[x]{x}\ge\sqrt[x]{\sin(x)}\ge [/mm] 0$ für alle $x>0$

DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]