www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGrenzwert bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Grenzwert bestimmen
Grenzwert bestimmen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mi 14.11.2012
Autor: piriyaie

Aufgabe
[mm] \limes_{x\rightarrow 2} \bruch{x^{2}-4}{x-2} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich soll für die oben genannte Aufgabe den Grenzwert berechnen.

Aber bei mir kommt 0/0 raus... und das ist ja nicht möglich.

Was soll ich hinschreiben? Einfach "kein Grenzwert"?

Oder "Kein Grenzwert, da Graph der Funktion eine Gerade ist"?

Oder einfach nur einen Blitz neben hin"zeichnen".

Ich habe keine Ahnung.

Danke schonmal.

Grüße
Ali

        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Mi 14.11.2012
Autor: Diophant

Hallo Ali,

> [mm]\limes_{x\rightarrow 2} \bruch{x^{2}-4}{x-2}[/mm]
> Ich habe
> diese Frage in keinem Forum auf anderen Internetseiten
> gestellt.
>
> Hallo,
>
> ich soll für die oben genannte Aufgabe den Grenzwert
> berechnen.
>
> Aber bei mir kommt 0/0 raus... und das ist ja nicht
> möglich.

Das ist schoin einmal eine gute und richtige Beobachtung. 0/0 ist nicht definiert, das kann also die Lösung nicht sein. Nur: wenn dieser (oder andere der undefinierten Ausdrücke wie etwa [mm] 0*\infty, \infty/\infty, \infty-\infty [/mm] oder auch [mm] 1^{\infty}) [/mm] auftreten, dann muss man weiter untersuchen, denn es ist alles möglich, insbesondere kann es einen Grenzwert geben oder auch nicht (im eigentlichen Sinne).

>
> Was soll ich hinschreiben? Einfach "kein Grenzwert"?
>
> Oder "Kein Grenzwert, da Graph der Funktion eine Gerade
> ist"?
>
> Oder einfach nur einen Blitz neben hin"zeichnen".

Keines von den dreien. Du musst weiterrechnen. Faktorisiere den Zähler, dann kannst du kürzen und siehst den Grenzwert unmittelbar.


Gruß, Diophant

Bezug
                
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Mi 14.11.2012
Autor: piriyaie

Hallo Diophant,

danke schonmal.

also folgenden lösungsvorschlag hab ich:

[mm] \limes_{x \rightarrow 2 } \bruch{x^{2}-4}{x-2} [/mm] = [mm] \bruch{(x-2) (x+2)}{x-2} [/mm] = [mm] \bruch{x+2}{1} [/mm] = x+2 = 0

richtig???????

Vielen Dank.

Grüße
Ali

Bezug
                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Mi 14.11.2012
Autor: fred97


> Hallo Diophant,
>  
> danke schonmal.
>  
> also folgenden lösungsvorschlag hab ich:
>  
> [mm]\limes_{x \rightarrow 2 } \bruch{x^{2}-4}{x-2}[/mm] =
> [mm]\bruch{(x-2) (x+2)}{x-2}[/mm] = [mm]\bruch{x+2}{1}[/mm] = x+2 = 0
>  
> richtig???????


Nein !!!!!!  Einmal schreibst lim davor , dann wieder nicht. Machst Du das auch so unter der Dusche. Einmal mit Wasser, dann wieder ohne ?

Korrekt :

[mm]\limes_{x \rightarrow 2 } \bruch{x^{2}-4}{x-2}[/mm]= [mm] \limes_{x \rightarrow 2 }(x+2)=4. [/mm]

FRED

>  
> Vielen Dank.
>  
> Grüße
>  Ali


Bezug
                                
Bezug
Grenzwert bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Mi 14.11.2012
Autor: piriyaie

Woah ja... hahahaha... musste grad echt lachen.

hatte mich auch noch verrechnet.

ok.

Vielen Dank für eure Hilfe.

Grüße
Ali

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]