www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert  der Reihe 1/k^2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert der Reihe 1/k^2
Grenzwert der Reihe 1/k^2 < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert der Reihe 1/k^2: Fehler
Status: (Frage) beantwortet Status 
Datum: 12:46 Sa 09.12.2006
Autor: GorkyPark

Mahlzeit!

Also ich habe da irgendwo einen Fehler gemacht. Ich hoffe ihr könnt mir helfen.

Der Grenzwert der Reihe [mm] \summe_{i=1}^{\infty} \bruch{1}{k^{2}} [/mm] ist ja [mm] \pi^{2}/6. [/mm]

Ich wollte das mit dem Quotientenkriterium überprüfen.

Das heisst es muss gelten [mm] \bruch{a_{n+1}}{a_{n}}\le [/mm] q für fast alle n

wobei q zwischen 0 und 1 liegt.

[mm] \bruch{a_{n+1}}{a_{n}}=\bruch{1/(k+1)^{2}}{1/k^{2}} [/mm] = [mm] \bruch{k^2}{(k+1)^{2}}. [/mm]

Diese Folge konvergiert gegen 1. Also kann man kein  solches q finden, da die Folge gegen 1 strebt.
Daraus folgt, dass die Reihe divergiert. Das is aber nicht der Fall.

Kann mir jemand sagen wo mein Fehler ist? Vielen DAnk für eure Bemühungen!

GorkyPArk  

        
Bezug
Grenzwert der Reihe 1/k^2: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Sa 09.12.2006
Autor: Zwerglein

Hi, GorkyPark,

Das Ergebnis 1 sagt Dir lediglich, dass Du das Quotientenkriterium hier nicht anwenden kannst!
Du darfst daraus nicht schließen, dass die Reihe divergiert!

Schau dazu auch mal hier:
[]http://www.math-kit.de/2003/content/RH-PB-XML-cob//Manifest308/quotkriterium.html

mfG!
Zwerglein

Bezug
                
Bezug
Grenzwert der Reihe 1/k^2: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:40 Sa 09.12.2006
Autor: GorkyPark

Danke Zwerglein für die schnelle Antwort.

Ich hab genauer nachgelesen und hab herausgefunden, dass ich nicht auf die Divergenz schliessen kann. Das könnte ich nur wenn [mm] \bruch{1/(k+1)^{2}}{1/k^{2}} \ge [/mm] 1 wäre. Das ist ja aber nicht der Fall. Denn diese Folge konvergiert gegen 1 aber von 0 aus.


Wi könnte ich nun zeigen dass diese Reihe [mm] \summe_{i=1}^{\infty} \bruch{1}{k^{2}} [/mm] wirklich konvergiert? Welches Kriterium sollte ich da anwenden? (Für das Majorantenkriterium weiss ich nur, dass die Reihe von [mm] \bruch{1}{k} [/mm] ja divergiert.)

MfG

GorkyPark

Bezug
                        
Bezug
Grenzwert der Reihe 1/k^2: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Di 12.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]