www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Grenzwert einer Folge
Grenzwert einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Folge: Brauche Idee
Status: (Frage) beantwortet Status 
Datum: 18:48 Do 25.06.2015
Autor: mathelernender

Aufgabe
Bestimme den Grenzwert von der Folge [mm] \summe_{k=0}^{n} a^{n-k}*b^{k} [/mm] wobei [mm] a\not=b [/mm] a,b [mm] \in \IR [/mm]



Hallo,

wir hatten eine ziemlich komplizierte rekursive Folge gegeben und sollten diese in die explizite Form überführen (und ich behaupte, das ist mir gelungen! Probe mit "Testwerten" passt!).

Nun soll noch auf Konvergenz untersucht werden. Der Aufbau der Folge erinnert stark an ein Polynom, allerdings habe ich eine solche Folge noch nie untersucht und weiß nicht so richtig wie ich loslegen los. Meine Behauptung wäre, dass das divergiert...allerdings auch wirklich nur aus dem Bauch heraus...

Über Tipps wäre ich sehr dankbar!

        
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Do 25.06.2015
Autor: Gonozal_IX

Hiho,

da geht doch noch mehr, was die explizite Darstellung angeht.
Sogar ganz ohne Summenzeichen!

Heißer Tipp:
Für [mm] $a\not=0$ [/mm] gilt $ [mm] \summe_{k=0}^{n} a^{n-k}\cdot{}b^{k} [/mm] = [mm] a^n\summe_{k=0}^{n} \left(\bruch{b}{a}\right)^k$ [/mm]

Da lacht einen doch eine bekannte Summe an, wenn man [mm] $q=\bruch{b}{a}$ [/mm] setzt.

Gruß,
Gono

Bezug
                
Bezug
Grenzwert einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Do 25.06.2015
Autor: mathelernender

geometrische Reihe meinst Du, oder?

Bezug
                        
Bezug
Grenzwert einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:22 Fr 26.06.2015
Autor: Gonozal_IX

Hiho,

> geometrische Reihe meinst Du, oder?

[ok]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]