www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert einer Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Grenzwert einer Reihe
Grenzwert einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Reihe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:51 Do 30.11.2006
Autor: GorkyPark

Hallo!

Ich habe hier ein Problem mit Grenzwerten von Reihen.

Zu allererst stimmt das Folgende? Falls eine Reihe konvergent ist, ist ihr Grenzwert immer 0?


Und zweitens: kann mir jemand das Kriterium von Cauchy für Reihen erklären?  Es lautet ja folgendermassen: Eine Reihe ist nur dann konvergent, wenn für jedes [mm] \varepsilon [/mm] >0 es ein [mm] n_{0} \in \IN [/mm] gibt so dass  gilt: ¦ [mm] \summe_{k=m}^{n}a_{k} [/mm] ¦ < [mm] \varepsilon, [/mm] für alle [mm] n\ge [/mm] m [mm] \ge n_{0} [/mm]

(Das sollen Betragsstriche sein).

Kann mir das jemand konkret an einem Beispiel erklären (z.B. für die harmoische Reihe von  [mm] \summe_{k=1}^{\infty} [/mm] 1/k. Die ist ja nicht konvergent, also kann man ja kein solcehs Epsilon finden. Kann mir bitte jemand das Kriterium vorrechnen?)

Vielen Dank


Euer GorkyPark



        
Bezug
Grenzwert einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 Do 30.11.2006
Autor: GorkyPark

Ich hab's jetzt begriffen. Die Frage ist nicht mehr relevanrt. :-D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]