www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert einer Reihe
Grenzwert einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Di 08.01.2013
Autor: piriyaie

Aufgabe
[mm] \summe_{n=1}^{\infty} (\bruch{n}{n+1})^{n} [/mm]

Hallo,

ich soll den Grenzwert obiger Reihe zeigen bzw. zeigen ob die Reihe konvergent oder divergent ist.

Hier mein Lösungsvorschlag:

[mm] \summe_{n=1}^{\infty} (\bruch{n}{n+1})^{n} [/mm]

Nebenrechnung:

[mm] (\bruch{n}{n+1})^{n} [/mm] = [mm] \bruch{1}{(1+\bruch{1}{n})^{n}} [/mm]

[mm] \limes_{n\rightarrow\infty} \bruch{1}{(1+\bruch{1}{n})^{n}} [/mm] = 1

Aber ich denke das dies falsch ist. oder?

Was mach ich falsch?

Danke schonmal.

Grüße
Ali

        
Bezug
Grenzwert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Di 08.01.2013
Autor: pi-roland

Guten Abend Ali,

beachte: [mm] \limes_{n\rightarrow\infty}(1+\frac{1}{n})^n=e [/mm]
Es handelt sich um diesen speziellen Grenzwert, bei dem die Eulersche Zahl heraus kommt.
Der Rest schaut sehr richtig aus.

Viel Erfolg,


[mm] \pi-\mathrm{rol} [/mm]

Bezug
                
Bezug
Grenzwert einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Di 08.01.2013
Autor: piriyaie

ok.

hab vergessen, dass das so definiert ist.

also hier nochmal meine lösung:

[mm] \limes_{n\rightarrow\infty} \bruch{1}{(1+\bruch{1}{n})^{n}} [/mm] = [mm] \bruch{1}{e} [/mm] < 1

[mm] \Rightarrow [/mm] Die Reihe ist konvergent.

richtig?

Bezug
                        
Bezug
Grenzwert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Di 08.01.2013
Autor: Richie1401

Hallo,

> ok.
>  
> hab vergessen, dass das so definiert ist.
>  
> also hier nochmal meine lösung:
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{1}{(1+\bruch{1}{n})^{n}}[/mm]
> = [mm]\bruch{1}{e}[/mm] < 1
>  
> [mm]\Rightarrow[/mm] Die Reihe ist konvergent.
>  
> richtig?

Nein.

Sei [mm] \sum_{n=1}^{\infty}a_n [/mm] eine Reihe. Ist die Reihe konvergent so ist [mm] \lim\limits_{n\to\infty}a_n=0, [/mm] also [mm] a_n [/mm] eine Nullfolge. (notwendige Bedingung).

Bei dir ist jedoch [mm] a_n [/mm] keine Nullfolge. Daher divergiert die Reihe.

Bezug
                                
Bezug
Grenzwert einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Di 08.01.2013
Autor: piriyaie

AAAAAAAA verstehe! :-D

Habs kapiert.

Nächste Frage:

offensichtlich ist ja nicht nur [mm] (1+\bruch{1}{n})^{n} [/mm] = e

sondern z. B. auch [mm] k^{\bruch{1}{k}} [/mm] = [mm] e^{ln(k) * \bruch{1}{k}} [/mm]

Gibt es da irgendwo im inernet eine liste oder so wo alle solchen definitionen gelistet sind???

oder sind es nur die genannten zwei?

danke.

gibt es noch

Bezug
                                        
Bezug
Grenzwert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Di 08.01.2013
Autor: Richie1401

Hallo,

> AAAAAAAA verstehe! :-D
>  
> Habs kapiert.
>  
> Nächste Frage:
>  
> offensichtlich ist ja nicht nur [mm](1+\bruch{1}{n})^{n}[/mm] = e

Das stimmt nicht. Es ist
[mm] \limes_{n\rightarrow\infty}(1+\bruch{1}{n})^{n}=e [/mm]

>  
> sondern z. B. auch [mm]k^{\bruch{1}{k}}[/mm] = [mm]e^{ln(k) * \bruch{1}{k}}[/mm]

Was willst du denn mit dieser Umformung? Das ist ja auch keine Definition.

Es ist [mm] \limes_{k\rightarrow\infty}k^{\bruch{1}{k}}=1 [/mm]

>  
> Gibt es da irgendwo im inernet eine liste oder so wo alle
> solchen definitionen gelistet sind???

Du meinst ganz spezielle Grenzwerte? Ich denke, der Grenzwert mit e ist mit einer der wichtigsten. Außerdem sind Reihen auch recht wichtig. Besondere Entwicklungen sind z.B. die Reihen für SInus und Kosinus.

>  
> oder sind es nur die genannten zwei?
>  
> danke.
>  
> gibt es noch  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]