www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieGrenzwert ins Integral ziehen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Grenzwert ins Integral ziehen
Grenzwert ins Integral ziehen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert ins Integral ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:48 So 28.08.2011
Autor: T_sleeper

Aufgabe
Sei r>0, [mm] a:\mathbb{R}\to\mathbb{R} [/mm] eine stetig differenzierbare Funktion mit a(x)=1, falls [mm] |x|\leq r,\, [/mm] a(x)=0, falls [mm] |x|\geq [/mm] r+1 und [mm] |a'(x)|\leq2. [/mm] Weiterhin sei [mm] b:\mathbb{R}\to\mathbb{R} [/mm] eine beliebige nicht von r abhängige Funktion.

Dann gilt für 0<s<t: [mm] \int_{s}^{t}\int_{\{r\leq|x|\leq r+1\}}a'(x)b(\tau)dxd\tau\to0 [/mm] für [mm] r\to\infty. [/mm] Warum?

Hallo,

also es ist ja nach Definition klar, dass [mm] a'(x)\to0 [/mm] für [mm] r\to\infty [/mm] geht. Aber wieso kann ich den Grenzwert quasi in die Integrale hereinziehen? In dem inneren Integral hängt der Integrationsbereich ja auch von r ab. Mir fällt dazu wirklich keine passende Begründung ein.

        
Bezug
Grenzwert ins Integral ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 04:27 So 28.08.2011
Autor: Al-Chwarizmi


> Sei r>0, [mm]a:\mathbb{R}\to\mathbb{R}[/mm] eine stetig
> differenzierbare Funktion mit a(x)=1, falls [mm]|x|\leq r,\,[/mm]
> a(x)=0, falls [mm]|x|\geq[/mm] r+1 und [mm]|a'(x)|\leq2.[/mm] Weiterhin sei
> [mm]b:\mathbb{R}\to\mathbb{R}[/mm] eine beliebige nicht von r
> abhängige Funktion.
>  
> Dann gilt für 0<s<t: [mm]\int_{s}^{t}\int_{\{r\leq|x|\leq r+1\}}a'(x)b(\tau)dxd\tau\to0[/mm]
> für [mm]r\to\infty.[/mm] Warum?
>  Hallo,
>  
> also es ist ja nach Definition klar, dass [mm]a'(x)\to0[/mm] für
> [mm]r\to\infty[/mm] geht. Aber wieso kann ich den Grenzwert quasi in
> die Integrale hereinziehen? In dem inneren Integral hängt
> der Integrationsbereich ja auch von r ab. Mir fällt dazu
> wirklich keine passende Begründung ein.


Hallo T_sleeper,

es geht gar nicht darum, einen "Grenzwert in die Integrale
hineinzuziehen". Es geht aber um die Gestalt der Funktion a.
diese ist zuerst konstant gleich 0, steigt dann im Intervall
$\ [-r-1\ [mm] ...\,-r]$ [/mm] von 0 auf 1 an, bleibt dann von -r bis +r auf dem
Plateau der Höhe 1, sinkt über $\ [mm] [r\,...\,r+1]$ [/mm] wieder auf 0 ab und
bleibt dort. Deshalb ist zum Beispiel

    [mm] $\integral_{-r-1}^{-r}a'(x)\,dx\ [/mm] =\ a(-r)-a(-r-1)\ =\ 1-0\ =\ 1$

Mit umgekehrten Vorzeichen läuft das Ganze am rechten
Abhang des Plateaus ab. Der Faktor [mm] b(\tau) [/mm] ist, was die Inte-
gration über x betrifft, ein konstanter Faktor.
Die beiden "Abhangsintegrale" heben sich gegenseitig auf.

LG   Al-Chw.



Bezug
                
Bezug
Grenzwert ins Integral ziehen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 04:40 So 28.08.2011
Autor: T_sleeper


> > Sei r>0, [mm]a:\mathbb{R}\to\mathbb{R}[/mm] eine stetig
> > differenzierbare Funktion mit a(x)=1, falls [mm]|x|\leq r,\,[/mm]
> > a(x)=0, falls [mm]|x|\geq[/mm] r+1 und [mm]|a'(x)|\leq2.[/mm] Weiterhin sei
> > [mm]b:\mathbb{R}\to\mathbb{R}[/mm] eine beliebige nicht von r
> > abhängige Funktion.
>  >  
> > Dann gilt für 0<s<t: [mm]\int_{s}^{t}\int_{\{r\leq|x|\leq r+1\}}a'(x)b(\tau)dxd\tau\to0[/mm]
> > für [mm]r\to\infty.[/mm] Warum?
>  >  Hallo,
>  >  
> > also es ist ja nach Definition klar, dass [mm]a'(x)\to0[/mm] für
> > [mm]r\to\infty[/mm] geht. Aber wieso kann ich den Grenzwert quasi in
> > die Integrale hereinziehen? In dem inneren Integral hängt
> > der Integrationsbereich ja auch von r ab. Mir fällt dazu
> > wirklich keine passende Begründung ein.
>
>
> Hallo T_sleeper,
>  
> es geht gar nicht darum, einen "Grenzwert in die Integrale
>  hineinzuziehen". Es geht aber um die Gestalt der Funktion
> a.
>  diese ist zuerst konstant gleich 0, steigt dann im
> Intervall
>  [mm]\ [-r-1\ ...\,-r][/mm] von 0 auf 1 an, bleibt dann von -r bis
> +r auf dem
>  Plateau der Höhe 1, sinkt über [mm]\ [r\,...\,r+1][/mm] wieder
> auf 0 ab und
>  bleibt dort. Deshalb ist zum Beispiel
>  
> [mm]\integral_{-r-1}^{-r}a'(x)\,dx\ =\ a(-r)-a(-r-1)\ =\ 1-0\ =\ 1[/mm]
>  
> Mit umgekehrten Vorzeichen läuft das Ganze am rechten
>  Abhang des Plateaus ab. Der Faktor [mm]b(\tau)[/mm] ist, was die
> Inte-
>  gration über x betrifft, ein konstanter Faktor.
>  Die beiden "Abhangsintegrale" heben sich gegenseitig auf.
>  
> LG   Al-Chw.
>
>  

Ok, da hast du recht, ich habe die Frage aber auch blöd formuliert. In der Realität steht bei mir nämlich noch eine integrierbare, beschränkte Funktion c(x,t) vor dem a'(x), d.h. [mm] \int_{s}^{t}\int_{\{r\leq|x|\leq r+1\}}c(x,\tau)a'(x)b(\tau)dxd\tau. [/mm] Ich denke, dann geht das leider nicht mehr so einfach oder?

Bezug
                        
Bezug
Grenzwert ins Integral ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 So 28.08.2011
Autor: Al-Chwarizmi


> > > Sei r>0, [mm]a:\mathbb{R}\to\mathbb{R}[/mm] eine stetig
> > > differenzierbare Funktion mit a(x)=1, falls [mm]|x|\leq r,\,[/mm]
> > > a(x)=0, falls [mm]|x|\geq[/mm] r+1 und [mm]|a'(x)|\leq2.[/mm] Weiterhin sei
> > > [mm]b:\mathbb{R}\to\mathbb{R}[/mm] eine beliebige nicht von r
> > > abhängige Funktion.
>  >  >  
> > > Dann gilt für 0<s<t: [mm]\int_{s}^{t}\int_{\{r\leq|x|\leq r+1\}}a'(x)b(\tau)dxd\tau\to0[/mm]
> > > für [mm]r\to\infty.[/mm] Warum?
>  >  >  Hallo,
>  >  >  
> > > also es ist ja nach Definition klar, dass [mm]a'(x)\to0[/mm] für
> > > [mm]r\to\infty[/mm] geht. Aber wieso kann ich den Grenzwert quasi in
> > > die Integrale hereinziehen? In dem inneren Integral hängt
> > > der Integrationsbereich ja auch von r ab. Mir fällt dazu
> > > wirklich keine passende Begründung ein.
> >
> >
> > Hallo T_sleeper,
>  >  
> > es geht gar nicht darum, einen "Grenzwert in die Integrale
>  >  hineinzuziehen". Es geht aber um die Gestalt der Funktion a.
>  >  diese ist zuerst konstant gleich 0, steigt dann im Intervall
>  >  [mm]\ [-r-1\ ...\,-r][/mm] von 0 auf 1 an, bleibt dann von -r
> >bis +r auf dem
>  >  Plateau der Höhe 1, sinkt über [mm]\ [r\,...\,r+1][/mm] wieder
> > auf 0 ab und bleibt dort. Deshalb ist zum Beispiel
>  >  
> > [mm]\integral_{-r-1}^{-r}a'(x)\,dx\ =\ a(-r)-a(-r-1)\ =\ 1-0\ =\ 1[/mm]  
> >  

> > Mit umgekehrten Vorzeichen läuft das Ganze am rechten
>  >  Abhang des Plateaus ab. Der Faktor [mm]b(\tau)[/mm] ist, was die
> > Integration über x betrifft, ein konstanter Faktor.
>  >  Die beiden "Abhangsintegrale" heben sich gegenseitig auf.
>  >  
> > LG   Al-Chw.
> >
> >  

> Ok, da hast du recht, ich habe die Frage aber auch blöd
> formuliert. In der Realität steht bei mir nämlich noch
> eine integrierbare, beschränkte Funktion c(x,t) vor dem
> a'(x), d.h. [mm]\int_{s}^{t}\int_{\{r\leq|x|\leq r+1\}}c(x,\tau)a'(x)b(\tau)dxd\tau.[/mm]
> Ich denke, dann geht das leider nicht mehr so einfach oder?

Ja, das ändert natürlich die Situation. Ich dachte schon
vorher, dass die Lösung fast etwas zu einfach aussah,
weil der Limes für r gegen [mm] \infty [/mm] überhaupt nicht gebraucht
wurde.
Noch eine Frage zur Vergewisserung: welche Eigenschaften
soll die Funktion c genau haben ? Genügt es, dass c integrierbar
und beschränkt ist, oder soll z.B. auch noch das Integral von c
beschränkt sein ?

LG   Al-Chw.  


Bezug
                                
Bezug
Grenzwert ins Integral ziehen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:11 So 28.08.2011
Autor: T_sleeper

Hallo nochmal,

c sieht folgendermaßen aus [mm] c(x,\tau)=f(u(x,\tau))-f(v(x,\tau)), [/mm] hierbei ist [mm] f:\mathbb{R}\to\mathbb{R} [/mm] eine stetig differenzierbare Funktion und [mm] u,v\in C([0,\infty),L^{1}(\mathbb{R}))\cap L^{\infty}(\mathbb{R}\times(0,\infty)). [/mm]

Vielleicht kann man damit etwas mehr über den Grenzwert für [mm] r\to\infty [/mm] aussagen.

Bezug
                                        
Bezug
Grenzwert ins Integral ziehen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 30.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]