Grenzwert mit Wurzel < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien a, b, c [mm] \in \IR [/mm] mit a > 0. Geben Sie [mm] \alpha, \beta [/mm] an, sodass [mm] \limes_{x\rightarrow\infty}(\wurzel{ax^{2}+bx+c}-\alpha*x-\beta) [/mm] = 0 |
Hallo allerseits,
ich hab schon ein bisschen rumgesucht und ein paar ähnliche Aufgaben und Lösungen gefunden, aber nichts was richtig zu meiner Aufgabe passt, und hab auch selbst dran rumgetüftelt (s.u.), hoffentlich mit Erfolg... Ich möchte aber doch mal wissen, ob ich richtig liege mit meiner Lösung oder ob alles Käse ist, was ich fabriziert hab....
Ich hab zuerst mal nach Standardlösung erweitert, um die dritte binomische Formel zu kriegen:
[mm] (\wurzel{ax^{2}+bx+c}-(\alpha*x+\beta))*\bruch{(\wurzel{ax^{2}+bx+c} + (\alpha x + \beta))}{(\wurzel{ax^{2}+bx+c} + (\alpha x + \beta))} [/mm] = [mm] \bruch{(ax^2+bx+c)-(\alpha x+\beta)^2}{(\wurzel{ax^{2}+bx+c} + (\alpha x + \beta))} [/mm] = [mm] \bruch{(ax^2+bx+c)-(\alpha^2 x^2+2\alpha \beta x + \beta^2)}{(\wurzel{ax^{2}+bx+c} + (\alpha x + \beta))} [/mm] = [mm] \bruch{(ax^2+bx+c)-(\alpha^2 x^2+2\alpha \beta x + \beta^2)}{x\wurzel{a+b/x+c/x^2} + (\alpha x + \beta)}
[/mm]
dann x rausgekürzt:
[mm] =\bruch{ax+b+c/x-\alpha^2 x-2\alpha \beta-\beta^2/x}{\wurzel{a+b/x+c/x^2} + \alpha + \beta/x} =\bruch{(a-\alpha^2)x+(b-2\alpha \beta)+(c-\beta^2)/x}{\wurzel{a+b/x+c/x^2} + \alpha + \beta/x}
[/mm]
Wenn das jetzt gegen [mm] \infty [/mm] geht, wird im Zähler nur [mm] (a-\alpha^2)x [/mm] unendlich, [mm] (b-2\alpha \beta) [/mm] bleibt einfach stehen, Rest wird null, und im Nenner bleibt nur [mm] \wurzel{a}+\alpha [/mm] übrig.
Dann ist meines Erachtens der limes davon =0 genau dann, wenn [mm] \alpha=\wurzel{a} [/mm] und [mm] \beta=\bruch{b}{2\alpha}.
[/mm]
Bei Licht betrachtet bin ich mir eigentlich fast sicher, dass das so stimmt, aber ich kanns halt nich prüfen, und insbesondere bei der Sache mit [mm] (a-\alpha^2)x=0 [/mm] weiß ich nicht, ob da nicht am Ende [mm] 0*\infty [/mm] dasteht, was verboten ist?
Schon mal im Voraus besten Dank,
mfg Virrealis
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:46 So 03.02.2008 | Autor: | guenther |
Hallo,
ohne große Umformungen darf ich doch die gesamte Gleichung durch x teilen, bevor x unendlich wird,
dann bleibt sqr(a + b/x + c/x²) -alpha - beta/x = 0
nach dem Grenzübergang bleibt sqr(a) - alpha = 0
ich finde das zulässig
lg, guenther
|
|
|
|
|
Es gibt hier keine Gleichung, also kann man auch nicht durch irgendetwas teilen. Hier geht es darum, einen von Parametern abhängigen Funktionsterm für [mm]x \to \infty[/mm] zu untersuchen.
|
|
|
|
|
Deine Argumentation stimmt.
Deine Skrupel bezüglich [mm]0 \cdot \infty[/mm] sind ehrenwert, aber unbegründet. Es geht ja gar nicht um zwei von [mm]x[/mm] abhängige Faktoren, von denen der eine gegen [mm]0[/mm], der andere gegen [mm]\infty[/mm] geht - dann wäre in der Tat höchste Vorsicht angebracht -, sondern hier fällt das Glied [mm](a - \alpha^2) \, x[/mm] schon aus Gründen der Algebra weg, wenn [mm]a = \alpha^2[/mm] ist. [mm]a[/mm] und [mm]\alpha[/mm] sind ja der Aufgabe übergeordnete Parameter, keine eigentlichen Variablen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:35 So 03.02.2008 | Autor: | Virrealis |
ok, dann ist ja alles klar, vielen Dank für die schnelle Hilfe.
Gruß
Virrealis
|
|
|
|