www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert v. Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwert v. Folge
Grenzwert v. Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert v. Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Do 30.04.2009
Autor: unR34L

Aufgabe
Berechnen Sie die Grenzwerte folgender Zahlenfolgen:
a)
[mm] a_{n}= (\bruch{3n-2}{3n+1})^{2n} [/mm]
b)

[mm] a_{n}=(\wurzel{2n-8})^{\bruch{1}{n-4}} [/mm]

zu a)

Hab versucht es auf die Form (1+ [mm] \bruch{x}{n})^{n} [/mm] zu bekommen.

Bin soweit gekommen: (1+ [mm] \bruch{-3}{3n+1})^{2n} [/mm] aber irgendwie hilft mir das auch nicht so recht weiter.

Wie forme ich die Folge am geschicktesten um, damit ich den GW berechnen kann?

Zu b) hab ich mir noch keine Gedanken gemacht, wollte erstmal a) lösen.

        
Bezug
Grenzwert v. Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 30.04.2009
Autor: abakus


> Berechnen Sie die Grenzwerte folgender Zahlenfolgen:
>  a)
>  [mm]a_{n}= (\bruch{3n-2}{3n+1})^{2n}[/mm]
>  b)
>  
> [mm]a_{n}=(\wurzel{2n-8})^{\bruch{1}{n-4}}[/mm]
>  zu a)
>  
> Hab versucht es auf die Form (1+ [mm]\bruch{x}{n})^{n}[/mm] zu
> bekommen.
>  
> Bin soweit gekommen: (1+ [mm]\bruch{-3}{3n+1})^{2n}[/mm] aber
> irgendwie hilft mir das auch nicht so recht weiter.
>  
> Wie forme ich die Folge am geschicktesten um, damit ich den
> GW berechnen kann?

Hallo,
erweitere den Exponenten mit [mm] -\bruch{3n+1}{3}. [/mm]
Damit bekommst du erst mal die gewünschte Form und einen übrigbleibenden Faktor im Exponenten.
Gruß Abakus

>  
> Zu b) hab ich mir noch keine Gedanken gemacht, wollte
> erstmal a) lösen.


Bezug
                
Bezug
Grenzwert v. Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Fr 01.05.2009
Autor: unR34L


>  Hallo,
>  erweitere den Exponenten mit [mm]-\bruch{3n+1}{3}.[/mm]
>  Damit bekommst du erst mal die gewünschte Form und einen
> übrigbleibenden Faktor im Exponenten.
>  Gruß Abakus


[mm] \bruch{2n*\bruch{-3n-1}{3}}{\bruch{-3n-1}{3}} [/mm] = [mm] \bruch{n(6n+2)}{3n+1} [/mm]

Jetzt hänge ich hier. Damit ich dass mit [mm] e^{x} [/mm] anwenden kann, muss doch der Exponent genau gleich dem Nenner in der Klammer sein. Wie kriege ich das hin ?

Bezug
                        
Bezug
Grenzwert v. Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Fr 01.05.2009
Autor: abakus


> >  Hallo,

>  >  erweitere den Exponenten mit [mm]-\bruch{3n+1}{3}.[/mm]
>  >  Damit bekommst du erst mal die gewünschte Form und
> einen
> > übrigbleibenden Faktor im Exponenten.
>  >  Gruß Abakus
>  
>
> [mm]\bruch{2n*\bruch{-3n-1}{3}}{\bruch{-3n-1}{3}}[/mm] =
> [mm]\bruch{n(6n+2)}{3n+1}[/mm]
>  
> Jetzt hänge ich hier. Damit ich dass mit [mm]e^{x}[/mm] anwenden
> kann, muss doch der Exponent genau gleich dem Nenner in der
> Klammer sein. Wie kriege ich das hin ?

Hallo,
[mm] (1+\bruch{-3}{3n+1})^{2n}=(1+\bruch{-3}{3n+1})^{2n\cdot\bruch{\bruch{3n+1}{-3}}{\bruch{3n+1}{-3}}}=((1+\bruch{-3}{3n+1})^{\bruch{3n+1}{-3}})^{\bruch{2n\cdot(-3)}{3n+1}}. [/mm]
Bei der Grenzwertbildung wird daraus "e hoch Exponent hinter der letzten Klammer".
Gruß Abakus

Bezug
                                
Bezug
Grenzwert v. Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Fr 01.05.2009
Autor: unR34L


> Hallo,
>  
> [mm](1+\bruch{-3}{3n+1})^{2n}=(1+\bruch{-3}{3n+1})^{2n\cdot\bruch{\bruch{3n+1}{-3}}{\bruch{3n+1}{-3}}}=((1+\bruch{-3}{3n+1})^{\bruch{3n+1}{-3}})^{\bruch{2n\cdot(-3)}{3n+1}}.[/mm]
>  Bei der Grenzwertbildung wird daraus "e hoch Exponent
> hinter der letzten Klammer".
>  Gruß Abakus

Ok, die Umformungen hab ich schonmal kapiet. Aber wenn ich jetzt "e hoch Exponent  hinter der letzten Klammer" bilde kommt doch:

[mm] e^{\bruch{2n\cdot(-3)}{3n+1}}. [/mm]

Soweit mir bekannt müsste die Lösung [mm] e^{-2} [/mm] sein.

Bezug
                                        
Bezug
Grenzwert v. Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Fr 01.05.2009
Autor: abakus


> > Hallo,
>  >  
> >
> [mm](1+\bruch{-3}{3n+1})^{2n}=(1+\bruch{-3}{3n+1})^{2n\cdot\bruch{\bruch{3n+1}{-3}}{\bruch{3n+1}{-3}}}=((1+\bruch{-3}{3n+1})^{\bruch{3n+1}{-3}})^{\bruch{2n\cdot(-3)}{3n+1}}.[/mm]
>  >  Bei der Grenzwertbildung wird daraus "e hoch Exponent
> > hinter der letzten Klammer".
>  >  Gruß Abakus
>
> Ok, die Umformungen hab ich schonmal kapiet. Aber wenn ich
> jetzt "e hoch Exponent  hinter der letzten Klammer" bilde
> kommt doch:
>  
> [mm]e^{\bruch{2n\cdot(-3)}{3n+1}}.[/mm]
>  
> Soweit mir bekannt müsste die Lösung [mm]e^{-2}[/mm] sein.

Das sehe ich auch so.
Gruß Abakus


Bezug
                                        
Bezug
Grenzwert v. Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Fr 01.05.2009
Autor: XPatrickX

Hallo!

Beachte, dass die e-Funktion stetig ist, daher gilt nach dem Folgenkriterium:


[mm] $\lim_{n\to\infty} e^{x_n}= e^{\lim\limits_{n\to\infty} x_n}$ [/mm]


Gruß Patrick

Bezug
                                                
Bezug
Grenzwert v. Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Fr 01.05.2009
Autor: unR34L

Ahh, jetzt hats klick gemacht, danke !

zu b)

Werde ich mir jetzt mal angucken

----- Das hier macht wenig Sinn wenn ichs mir genau überlege.
Reichen da folgende Schlussfolgerungen ?

Für n > 4 ist [mm] \wurzel{2n-8} [/mm] > 0 und [mm] \lim_{n\to\infty} \wurzel[n]{q} [/mm] = 1 für q > 0, also [mm] \lim_{n\to\infty} \wurzel{2n-8} [/mm] =1 und [mm] \lim_{n\to\infty} 1^{\bruch{1}{n-4}} [/mm] = 1



Bezug
                                                        
Bezug
Grenzwert v. Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Fr 01.05.2009
Autor: abakus


> Ahh, jetzt hats klick gemacht, danke !
>  
> zu b)
>  
> Werde ich mir jetzt mal angucken
>  
> ----- Das hier macht wenig Sinn wenn ichs mir genau
> überlege.
>  Reichen da folgende Schlussfolgerungen ?
>  
> Für n > 4 ist [mm]\wurzel{2n-8}[/mm] > 0 und [mm]\lim_{n\to\infty} \wurzel[n]{q}[/mm]
> = 1 für q > 0, also [mm]\lim_{n\to\infty} \wurzel{2n-8}[/mm] =1 und
> [mm]\lim_{n\to\infty} 1^{\bruch{1}{n-4}}[/mm] = 1

Das greift zu kurz, denn du hast kein konstantes q, sondern ein mit n ebenfalls wachsendes q.
Wenn du den Term 2n-8 durch "k" substituierst, erhältst du den Term [mm] \wurzel[k]{k} [/mm] mit k gegen unendlich.
Aber substituiere mal lieber 2n-8 durch (k+1), dann erhältst du [mm] (1+k)^\bruch{1}{1+k}=(1+k)^{\bruch{1}{k}\cdot\bruch{k}{1+k}}. [/mm]
Gruß Abakus

>  
>  


Bezug
                                                                
Bezug
Grenzwert v. Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Fr 01.05.2009
Autor: unR34L


>  Das greift zu kurz, denn du hast kein konstantes q,
> sondern ein mit n ebenfalls wachsendes q.
>  Wenn du den Term 2n-8 durch "k" substituierst, erhältst du
> den Term [mm]\wurzel[k]{k}[/mm] mit k gegen unendlich.
>  Aber substituiere mal lieber 2n-8 durch (k+1), dann
> erhältst du
> [mm](1+k)^\bruch{1}{1+k}=(1+k)^{\bruch{1}{k}\cdot\bruch{k}{1+k}}.[/mm]
>  Gruß Abakus
>  


Hier blicke ich grade noch nicht so wirklich durch.

Wenn ich 2n-8 durch k substituiere komme ich auf [mm] \wurzel{k}^{\bruch{2}{k}}. [/mm] Wie kommt man damit auf [mm] \wurzel[k]{k} [/mm] ?

Und wenn man dann auf  [mm] \wurzel[k]{k} [/mm]  kommt, wieso kann ich dann nicht einfach sagen  [mm] \lim_{k\to\infty} \wurzel[k]{k} [/mm]  = 1 und wäre fertig ?


Bezug
                                                                        
Bezug
Grenzwert v. Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Fr 01.05.2009
Autor: XPatrickX


>
>
> Hier blicke ich grade noch nicht so wirklich durch.
>  
> Wenn ich 2n-8 durch k substituiere komme ich auf
> [mm]\wurzel{k}^{\bruch{2}{k}}.[/mm] Wie kommt man damit auf
> [mm]\wurzel[k]{k}[/mm] ?

$ [mm] a_{n}=(\wurzel{2n-8})^{\bruch{1}{n-4}} [/mm] =  [mm] a_{n}=(2n-8)^{{1/2}^{\bruch{1}{n-4}}}= a_{n}=(2n-8)^{\bruch{1}{2n-8}} [/mm] $

Jetzt kannst du substituieren.

>  
> Und wenn man dann auf  [mm]\wurzel[k]{k}[/mm]  kommt, wieso kann ich
> dann nicht einfach sagen  [mm]\lim_{k\to\infty} \wurzel[k]{k}[/mm]  
> = 1 und wäre fertig ?

Wenn ihr das in der Vorlesung bewiesen habt, dann kannst du das so machen.

Gruß Patrick

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]