www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGrenzwert von Summe u.i.v. ZV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Grenzwert von Summe u.i.v. ZV
Grenzwert von Summe u.i.v. ZV < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von Summe u.i.v. ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Mo 28.01.2013
Autor: triad

Aufgabe
Sei [mm] X_i, i\in\IN [/mm] eine Folge unabhängig, identisch verteilter (u.i.v.) Zufallsvariablen mit positivem Erwartungswert und endlicher Varianz. Zeigen Sie, dass für jedes $M>0$ gilt

[mm] \limes_{n\rightarrow\infty} P(\sum_{i=1}^{n}X_i>M)=1. [/mm]

Hallo.

Es wurde behauptet, dass man diese Aussage zeigen kann, indem man zeigt, dass

[mm] $\limes_{n\rightarrow\infty} P(\sum_{i=1}^{n}X_i\le [/mm] M)=0$.

Dies sei leichter, da man hierauf nämlich die Chebychev-Ungleichung anwenden könne.
In unserer Definition der Chebychev-Ungleichung steht aber, dass für eine reelle ZV X mit [mm] E(X^2)<\infty [/mm] und a>0 gilt
[mm] P(|X-E(X)|\ge a)\le\frac{V(X)}{a^2}. [/mm]

Stimmt das? Weil hier ist das Zeichen ja umgekehrt.


gruß
triad

        
Bezug
Grenzwert von Summe u.i.v. ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mo 28.01.2013
Autor: Gonozal_IX

Hiho,

vorweg: ich schreibe statt M mal [mm] \varepsilon [/mm] sonst kommt man mit den ganzen M's durcheinander :-)

zeige zuerst mit Hilfe der Tschebyscheff Ungleichung:

[mm] $\lim_{n\to\infty} \IP\left(\bruch{1}{n}\summe_{i=1}^n \left|M_i - E[M_i]\right| \ge \varepsilon\right) [/mm] = 0$ für beliebiges $M > 0$

Das ist auch bekannt als schwaches Gesetz der großen Zahlen, falls du was zum Nachschlagen haben willst.

Da [mm] $\mu [/mm] := [mm] E[M_1] [/mm] = [mm] E[M_i]$ [/mm] für alle i gilt (warum?), steht dann da nichts anderes als:

[mm] $\lim_{n\to\infty} \IP\left(\left(\bruch{1}{n}\summe_{i=1}^n M_i\right) \in (\mu - \varepsilon, \mu + \varepsilon)\right) [/mm] = 1$.

Schlussfolgere daraus sauber das Gewünschte.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]