www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwertberechnung
Grenzwertberechnung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 So 16.04.2006
Autor: Karl123

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Könnt ihr mir sagen, ob folgende Aufgabe richtig gelöst ist?

- Berechnen Sie den Grenzwert folgender Reihe:
∑(von k=1 bis ∞) = 1/(k*(k-1))

Der Grenzwert berechnet sich doch nach der Formel 1/(1-q), wobei q hier gleich 1/2 ist, oder?

Meine Lösung:
[mm] \summe_{k=1}^{ \infty} [/mm] = 1/(k*(k-1)) = 0 + 1/2 + 1/6 + 1/12 + ...

= 1/(1-(1/2)) = 2

Jetzt kommt aber für k=1 ein nicht definierter Betrag (1/0) raus. Was mache ich da?
Vielen Dank.

        
Bezug
Grenzwertberechnung: Fehler
Status: (Antwort) fertig Status 
Datum: 13:40 So 16.04.2006
Autor: leduart

Hallo Karl

> Hallo!
>  Könnt ihr mir sagen, ob folgende Aufgabe richtig gelöst
> ist?

Falsch gelöst!  

> - Berechnen Sie den Grenzwert folgender Reihe:
>  ∑(von k=1 bis ∞) = 1/(k*(k-1))
>  
> Der Grenzwert berechnet sich doch nach der Formel 1/(1-q),
> wobei q hier gleich 1/2 ist, oder?

Nein, das ist der GW von  [mm]\summe_{k=1}^{ \infty}q^k[/mm]

> Meine Lösung:
>   [mm]\summe_{k=1}^{ \infty}[/mm] = 1/(k*(k-1)) = 0 + 1/2 + 1/6 +
> 1/12 + ...

keine zweirpotenzen!

> = 1/(1-(1/2)) = 2
>  
> Jetzt kommt aber für k=1 ein nicht definierter Betrag (1/0)
> raus. Was mache ich da?

Wenn die Summe wirklich von 1 anfängt, und im Nenner nicht k*(k+1)steht ist sie nicht definiert. Sieh die Aufgabenstellung noch mal nach! sonst ist die Lösg einfach: nicht definiert!
Gruss und schöne Ostern leduart

Bezug
        
Bezug
Grenzwertberechnung: Teleskopsumme
Status: (Antwort) fertig Status 
Datum: 18:25 So 16.04.2006
Autor: Loddar

Hallo Karl!


Von leduarts Einwand bezüglich Startwert und/oder dem Vorzeichen in der Summe mal abgesehen, lässt sich dies Reihe sonst in eine sogenannte Teleskopreihe zerlegen:

[mm] $\bruch{1}{k*(k-1)} [/mm] \ = \ [mm] \bruch{1}{k-1}-\bruch{1}{k}$ [/mm]     bzw.     [mm] $\bruch{1}{k*(k+1)} [/mm] \ = \ [mm] \bruch{1}{k}-\bruch{1}{k+1}$ [/mm]


Damit eliminieren sich nämlich die meisten Reihenglieder und der entsprechende Grenzwert lässt sich schnell bestimmen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]