www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Grenzwertberechnung
Grenzwertberechnung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 So 22.06.2008
Autor: Nicksve

Aufgabe
Zeigen Sie, gegen welchen Wert der Term strebt, für [mm] \limes_{n\rightarrow\infty} [/mm] a) (2n [mm] (2n+1)*b^2)/(3(n+1)^3) [/mm] + [mm] (-a/(n+1))^2 [/mm]
                                                        b) [mm] (n*b^2)/((n-1)^2) [/mm]


Ich habe diese Frage in keinen anderen Foren auf anderen Internetseiten gestellt.

Hallo!

Die Aufgabe kommt eigentlich aus der Statistik und dient dort zur Bestimmung der Konsistenz im quadratischen Mittel. Wir haben auch die Lösungen erhalten und zwar gilt sowohl für a) als auch für b) =0. Ich habe nur leider überhaupt keine Idee, wie man darauf kommt, dass beide Terme für [mm] \limes_{n\rightarrow\infty} [/mm] = 0 werden. Ich hoffe, mir kann hier jemand weiterhelfen! Ach ja [mm] b^2 [/mm] und a sind einfach Paramter für die keine Werte eingesetzt werden.

MfG

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 So 22.06.2008
Autor: Somebody


> Zeigen Sie, gegen welchen Wert der Term strebt, für
> a) [mm]\limes_{n\rightarrow\infty}(2n (2n+1)*b^2)/(3(n+1)^3)+ (-a/(n+1))^2[/mm]
> b) [mm]\limes_{n\rightarrow\infty}(n*b^2)/((n-1)^2)[/mm]
>  
> Ich habe diese Frage in keinen anderen Foren auf anderen
> Internetseiten gestellt.
>  
> Hallo!
>  
> Die Aufgabe kommt eigentlich aus der Statistik und dient
> dort zur Bestimmung der Konsistenz im quadratischen Mittel.
> Wir haben auch die Lösungen erhalten und zwar gilt sowohl
> für a) als auch für b) =0. Ich habe nur leider überhaupt
> keine Idee, wie man darauf kommt, dass beide Terme für
> [mm]\limes_{n\rightarrow\infty}[/mm] = 0 werden. Ich hoffe, mir kann
> hier jemand weiterhelfen! Ach ja [mm]b^2[/mm] und a sind einfach
> Paramter für die keine Werte eingesetzt werden.

In diesen Fällen ist die Grenzwertebetrachtung einfach, denn bei a) ist der Zähler ein Polynom in $n$ vom 2. Grad, der Nenner aber ein Polynom in $n$ vom 3. Grad: daher geht dieser Bruchterm für [mm] $n\rightarrow \infty$ [/mm] gegen $0$. (Du kannst ja, wenn Du es genauer sehen willst, Zähler und Nenner nach Potenzen von $n$ geordnet hinschreiben und dann durch die grösste gemeinsame Potenz von Zähler und Nenner, hier also [mm] $n^2$, [/mm] teilen). Der Zähler geht bei a) dann gegen eine Konstante, der Nenner aber noch immer gegen [mm] $\infty$. [/mm]

Bei b) ist der Zähler ein Polynom in $n$ vom 1. Grad, der Zähler ein Polynom in $n$ vom 2. Grad: also geht auch dieser Bruchterm für [mm] $n\rightarrow \infty$ [/mm] gegen $0$. Auch bei diesem Beispiel mag es hilfreich sein, Zähler und Nenner zunächst beide durch $n$ zu teilen. Der Zähler geht dann für [mm] $n\rightarrow \infty$ [/mm] wieder gegen eine Konstante, der Nenner aber noch immer gegen [mm] $\infty$. [/mm]

Bezug
                
Bezug
Grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 So 22.06.2008
Autor: Nicksve

Danke für die schnelle Beantwortung der Frage!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]