www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Grenzwertberechnung
Grenzwertberechnung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:30 Do 27.01.2011
Autor: DerdersichSichnennt

Aufgabe
Berechnen Sie den Grenzwert:

[mm] \limes_{x\rightarrow1} [/mm] = [mm] \bruch{ln x}{\wurzel{x^{3}-1}} [/mm]

Guten Tag alle zusammen.

Ich habe bei der Aufgabe ne kleine Rückfrage, weil sich meine Lösung leicht von der Lösung meines Tutors untesrcheidet.
Hier meine Lösung:

[mm] \limes_{x\rightarrow1} [/mm] = [mm] \bruch{ln x}{\wurzel{x^{3}-1}} [/mm] = [mm] \bruch{0}{0} \Rightarrow [/mm] unbestimmter Ausdruck [mm] \Rightarrow [/mm] l'hospital

[mm] \limes_{x\rightarrow1} [/mm] = ln x * [mm] (x^{3}-1)^{-\bruch{1}{2}} \Rightarrow \limes_{x\rightarrow1} [/mm] = [mm] \bruch{1}{x} [/mm] * [mm] -\bruch{3}{2}x^{2}(x^{3}-1)^{-\bruch{3}{2}} \gdw \limes_{x\rightarrow1} [/mm] = [mm] \bruch{\bruch{1}{x} * -\bruch{3}{2}x^{2}}{\wurzel[3]{x^{3}-1}} [/mm] = [mm] \limes_{x\rightarrow1} \bruch{1,5}{0} [/mm] = 0

Die Lösung des Tutors beinhaltet eine andere Lösung der Ableitung von ln x * [mm] (x^{3}-1)^{-\bruch{1}{2}} [/mm] (nämlich: [mm] \bruch{\bruch{1}{x}}{\bruch{1}{2}(x^{3}-1)^{-\bruch{1}{2}} * 3x^{2}} [/mm] )und daraus resultierend kommt er am Ende auf [mm] \limes_{x\rightarrow1} \bruch{1}{0} [/mm] = 0

Kann mir jemand von euch sagen ob ich bei der Ableitung einen Fehler gemacht habe und wenn ja wo bzw. wie?

Schonmal vielen Dank für dei Hilfe.

DerdersichSichnennt

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Do 27.01.2011
Autor: fred97

Du hast den Quotienten [mm] \bruch{f(x)}{g(x)} [/mm]

2  Fehler hast Du gemacht:

1.  Du hast nicht  [mm] \bruch{f'(x)}{g'(x)} [/mm]  betrachtet, sondern  [mm] (\bruch{f(x)}{g(x)})' [/mm]  und das

2. auch noch falsch. Du hast die Produktregel vergewaltigt.

FRED

Bezug
                
Bezug
Grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Do 27.01.2011
Autor: DerdersichSichnennt

Danke für deine schnelle Hilfe.

Du hast natürlich, jetzt wo ich mir meine Lösung nochmal angesehen habe ist es mir aufgefallen. Jetzt komm ich auch auf das richtige Ergebnis.

Also nochmal Danke und Grüße

Sich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]