www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Grenzwertberechnung
Grenzwertberechnung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 11.05.2011
Autor: Parkan

Aufgabe
[mm]f(n)=\begin{cases} 1, & \mbox{falls } x= \bruch{1}{n} \mbox{ fuer ein n element \IN} \\ x, & \mbox{sonst } \mbox{} \end{cases}[/mm]
[mm][/mm]
Geben Sie die folgenden Grenzwerte ein.
1. f(x)= [mm]\limes_{x\rightarrow 0} [/mm]
2. f(x) = [mm]\limes_{x\rightarrow 1} [/mm]
3. f(x) = [mm]\limes_{x\rightarrow \bruch{1}{2}} [/mm]

An welchen Stellen ist f(x) unstetig?


Hallo
Ich habe bei
1) 0
2) 1
3) 1

Unstetig ist f an allen Stellen wo x ungleich [mm]\bruch{1}{n}[/mm] mit ausname x=1.

Ist irgendwas richtig?

Danke für Eure Hilfe
Janina


        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mi 11.05.2011
Autor: rainerS

Hallo Janina!

> [mm]f(n)=\begin{cases} 1, & \mbox{falls } x= \bruch{1}{n} \mbox{ fuer ein n element \IN} \\ x, & \mbox{sonst } \mbox{} \end{cases}[/mm]
> [mm][/mm]
>  
> Geben Sie die folgenden Grenzwerte ein.
>  1. f(x)= [mm]\limes_{x\rightarrow 0}[/mm]
>  2. f(x) =
> [mm]\limes_{x\rightarrow 1}[/mm]
>  3. f(x) = [mm]\limes_{x\rightarrow \bruch{1}{2}}[/mm]
>  
> An welchen Stellen ist f(x) unstetig?
>  
> Hallo
>  Ich habe bei
> 1) 0

[notok]

>  2) 1

[ok]

>  3) 1

[notok]

> Unstetig ist f an allen Stellen wo x ungleich [mm]\bruch{1}{n}[/mm]
> mit ausname x=1.

[ok]

Erklärung:
Die Kurve von f ist bis auf die Unstetigkeitsstellen die Gerade $y=x$.

Bei x=1 ist f stetig, also ist der Grenzwert gleich $f(1)=1$.

Aber bei $x=1/2$ ist f unstetig. $f(1/2)=1$, aber wenn ich mich von rechts oder links an den Wert $x=1/2$ annähere, dann nähert sich $f(x)$ an den Wert $1/2$ an, daher ist [mm] $\limes_{x\rightarrow \bruch{1}{2}}f(x)= \bruch{1}{2}$. [/mm]

Der schwierigste Teil ist die Frage nach [mm]\limes_{x\rightarrow 0} f(x)[/mm]. Bedenke, dass an jedem x der Form [mm] $\bruch{1}{n}$ [/mm] die Funktion den Wert 1 hat. Wenn du dich also von positiven x her der Null näherst, wird f(x) immer kleiner, außer an diesen Unstetigkeitsstellen, an denen der Funktionswert auf 1 springt. Kann also dieser Grenzwert überhaupt sinnvoll angegeben werden?

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]