www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 So 13.11.2011
Autor: Biensche

Aufgabe
Entscheiden Sie,ob die nachstehenden Folgen für n [mm] \to \infty [/mm] konvergieren und bestimmen Sie ggf. den Grenzwert (mit kurzer Begründung)

1) [mm] a_{n} [/mm] = [mm] n^{p/q} [/mm] (p [mm] \in \IZ, [/mm] q [mm] \in \IN [/mm] )

2) [mm] a_{n} [/mm] = [mm] n^p*q^n (p\in \IN, [/mm] |q|< 1)

Hallo zusammen!

Ich steh wirklich auf dem Schlauch bei den beiden Aufgaben.
Bei er 2. habe ich mir folgendes überlegt:

[mm] \limes_{n\rightarrow\infty} a_{n} [/mm] =
[mm] \limes_{n\rightarrow\infty}n^p*q^n [/mm] =
[mm] \limes_{n\rightarrow\infty} n^p [/mm] * [mm] \limes_{n\rightarrow\infty} q^n [/mm]

Jetzt weiß ich aus der Vorlesung, dass [mm] \limes_{n\rightarrow\infty} q^n [/mm] = 0 ist und [mm] \limes_{n\rightarrow\infty} n^p [/mm] = [mm] \infty. [/mm]
Aber ich kann ja schlecht 0* [mm] \infty [/mm] rechnen, da es ja nicht definiert ist.

Wie muss ich denn hier vorgehen?

Zur 1:

Ich habe [mm] a_{n} [/mm] = [mm] n^{p/q} \gdw a_{n} =\wurzel[q]{n^p} [/mm] . Es gilt ja = [mm] \limes_{n\rightarrow\infty}\wurzel[q]{n} [/mm] = 1 ,oder? Aber ich weiß nicht, ob und v.a. wie ich damit weitermachen kann.



Vielen Dank für eure Hilfe.




Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:56 Mo 14.11.2011
Autor: reverend

Hallo Biensche,

> Entscheiden Sie,ob die nachstehenden Folgen für n [mm]\to \infty[/mm]
> konvergieren und bestimmen Sie ggf. den Grenzwert (mit
> kurzer Begründung)
>  
> 1) [mm]a_{n}[/mm] = [mm]n^{p/q}[/mm] (p [mm]\in \IZ,[/mm] q [mm]\in \IN[/mm] )
>  
> 2) [mm]a_{n}[/mm] = [mm]n^p*q^n (p\in \IN,[/mm] |q|< 1)
>  
> Ich steh wirklich auf dem Schlauch bei den beiden
> Aufgaben.
>  Bei er 2. habe ich mir folgendes überlegt:
>  
> [mm]\limes_{n\rightarrow\infty} a_{n}[/mm] =
>  [mm]\limes_{n\rightarrow\infty}n^p*q^n[/mm] =
> [mm]\limes_{n\rightarrow\infty} n^p[/mm] *
> [mm]\limes_{n\rightarrow\infty} q^n[/mm]
>  
> Jetzt weiß ich aus der Vorlesung, dass
> [mm]\limes_{n\rightarrow\infty} q^n[/mm] = 0 ist und
> [mm]\limes_{n\rightarrow\infty} n^p[/mm] = [mm]\infty.[/mm]
>  Aber ich kann ja schlecht 0* [mm]\infty[/mm] rechnen, da es ja
> nicht definiert ist.

So ist es.

> Wie muss ich denn hier vorgehen?

Hier kannst Du die []Regel von (de) l'Hospital anwenden.
Dazu musst Du allerdings etwas umformen. Es gibt zwei Möglichkeiten:

[mm] n^p*q^n=\bruch{n^p}{q^{-n}}=\bruch{q^n}{n^{-p}} [/mm]

Welche von beiden Darstellungen Du verwendest, ist hier egal.

> Zur 1:
>  
> Ich habe [mm]a_{n}[/mm] = [mm]n^{p/q} \gdw a_{n} =\wurzel[q]{n^p}[/mm] . Es
> gilt ja = [mm]\limes_{n\rightarrow\infty}\wurzel[q]{n}[/mm] = 1
> ,oder? Aber ich weiß nicht, ob und v.a. wie ich damit
> weitermachen kann.

Du wirst um eine Fallunterscheidung nicht herumkommen. Schau Dir dazu mal vier einfache Fälle an:

1) [mm] a_n=n^2;\quad [/mm] 2) [mm] a_n=n^{-2};\quad [/mm] 3) [mm] a_n=n^{\bruch{1}{2}};\quad [/mm] 4) [mm] a_n=n^{-\bruch{1}{2}} [/mm]

Und bedenke schließlich noch, dass auch p=0 möglich ist (der einzige Spezialfall).

Grüße
reverend


Bezug
        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 Mo 14.11.2011
Autor: fred97

Einige Bemerkungen zu Aufgabe 2).

1. Wenn die Regel von de  l'Hospital schon dran war, so kann man diese natürlich einsetzen, wie das reverend vorgeschlagebn hat.

2. Wenn die die Regel von de  l'Hospital schon dran war, dann waren auch sicher schon Konvergenzkriterien für Reihen dran, z.B. das Wurzelkriterium.

Mit diesem sieht man sofort, dass [mm] \sum n^pq^n [/mm] konv. , wenn |q|<1 ist. Somit ist [mm] (n^pq^n) [/mm] eine Nullfolge.

3. Dem Aufgabentyp entnehme ich allerdings, dass weder de l'Hospital noch das Wurzelkriterium schon  behandelt wurden.

Dann ist die Aufgabe nicht einfach !  Und der Zusatz " mit kurzer Begründung" eine Unverschämtheit.

Daher, liebes Biensche, sage ich Dir, wo Du eine Lösung finden kannst:

    H: Heuser: Lehrbuch der Analysis, Teil 1, § 21, Beispiel 7.

FRED

Bezug
                
Bezug
Grenzwertbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:14 Mo 14.11.2011
Autor: Biensche

Danke für eure Hilfe.
Wie du richtig angenommen hast, FRED, hatten wir weder die eine Regel noch das andere Kriterium für Konvergenz in der Vorlesung ;)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]