www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwertbestimmung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:03 Fr 05.08.2005
Autor: rotzel

Guten Abend,

folgende Aufgabe gibt mir zu Schaffen:

Bestimmen Sie den Grenzwert

[mm]\lim_{x\to a}{\frac{x^m - a^m}{x^n - a^n}}[/mm]

Normalerweise würde ich ein Grenzwertaufgabe vereinfachen und den Grenzwert x einsetzen und hätte ein Lösung. Bei dieser Aufgabe weiss ich wie ich sie umformen soll, oder gar vereinfachen. Sezte ich direkt die Grenze ein bekomme ich den Ausdruck 0. Wie packe ich diese Aufgabe am besten an?


Besten Dank für eure Hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Grenzwertbestimmung: de l'Hospital ??
Status: (Antwort) fertig Status 
Datum: 23:24 Fr 05.08.2005
Autor: Loddar

Hallo rotzel!


Kennst Du bereits den MBGrenzwertsatz nach de l'Hospital ??

Für $x \ [mm] \red{=} [/mm] \ a$ erhält man ja den den Ausdruck [mm] $\bruch{0}{0}$ [/mm] und darf also mit de l'Hospital arbeiten und kommt damit sehr schnell zum Ziel.


Ein anderer Lösungsweg wäre zunächst in Nenner und Zähler jeweils [mm] $a^m$ [/mm] bzw. [mm] $a^n$ [/mm] auszuklammern:

[mm] $\limes_{x\rightarrow a}\bruch{x^m-a^m}{x^n-a^n} [/mm] \ = \ [mm] \limes_{x\rightarrow a}\bruch{a^m*\left[\left(\bruch{x}{a}\right)^m-1\right]}{a^n*\left[\left(\bruch{x}{a}\right)^n-1\right]} [/mm] \ = \ [mm] \bruch{a^m}{a^n}*\limes_{x\rightarrow a}\bruch{\left(\bruch{x}{a}\right)^m-1}{\left(\bruch{x}{a}\right)^n-1} [/mm] \ = \ [mm] a^{m-n}*\limes_{x\rightarrow a}\bruch{\bruch{\left(\bruch{x}{a}\right)^m-1}{\bruch{x}{a}-1}}{\bruch{\left(\bruch{x}{a}\right)^n-1}{\bruch{x}{a}-1}}$ [/mm]

Substitution $z \ := \ [mm] \bruch{x}{a}$ [/mm]

[mm] $\Rightarrow$ $\limes_{x\rightarrow a}\bruch{x^m-a^m}{x^n-a^n} [/mm] \ = \ [mm] a^{m-n}*\limes_{\red{z}\rightarrow \red{1}}\bruch{\bruch{\red{z}^m-1}{\red{z}-1}}{\bruch{\red{z}^n-1}{\red{z}-1}}$ [/mm]


Und nun betrachte mal den verbliebenen Bruch und lies Dir dazu mal diese Frage (mit Antwort) durch ...


Und, zu welchem Ergebnis kommst Du?

Gruß
Loddar


Bezug
                
Bezug
Grenzwertbestimmung: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:18 Sa 06.08.2005
Autor: rotzel

Hallo Loddar,

zunächst mal besten Dank für den zündenden Funken. Die Formel de l'Hospital kenne ich, bin aber nicht auf die Idee gekommen die hier anzuwenden und den Limes so umzuformen wie du es gemacht hast, habe ich nicht hinbekommen. Aber jetz habe ich folgende Lösung erhalten:

$ [mm] \limes_{x\rightarrow a}\bruch{x^m-a^m}{x^n-a^n} [/mm]  $
Zähler und Nenner ableiten
$ [mm] \limes_{x\rightarrow a}\bruch{m*x^{m-1}}{n*x^{n-1}} [/mm] $
zusammenfassen und für x=a einsetzen gibt schlussendlich
$ [mm] \bruch{m}{n}* a^{m-n} [/mm] $

Gruss rotzel





Bezug
                        
Bezug
Grenzwertbestimmung: Stimmt ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Sa 06.08.2005
Autor: Loddar

Hallo rotzel!


> zusammenfassen und für x=a einsetzen gibt schlussendlich
> [mm]\bruch{m}{n}* a^{m-n}[/mm]

[daumenhoch] Das habe ich auch erhalten!


Gruß
Loddar


Bezug
        
Bezug
Grenzwertbestimmung: Fallunterscheidung?
Status: (Antwort) fertig Status 
Datum: 11:48 Sa 06.08.2005
Autor: Zwerglein

Hi, rotzel,

da über den Parameter a keine Aussage getroffen wird, muss man - so denke ich - zumindest die Fälle
a=0 und a [mm] \not= [/mm] 0 unterscheiden.
(Mit m und n sind ja hoffentlich natürliche Zahlen gemeint, also: m,n [mm] \in \{1; 2; 3; ...\}. [/mm] Sonst nehmen die Fallunterscheidungen Überhand!)

1. Fall: a=0.

Dann erhält man: [mm] \limes_{x\rightarrow 0}\bruch{x^{m}}{x^{n}}. [/mm]
Dies nun wiederum ergibt:
(a) 1, falls m=n,
(b) 0, falls m>n
(c) [mm] \pm\infty [/mm] (je nach Annäherung von rechts oder links gegen 0) für n>m.

2. Fall: [mm] a\not= [/mm] 0
Hier gilt die von Loddar beschriebene Lösung.

Schlussbemerkung: Man erkennt, dass in allen Fällen (außer für a=0 und m<n) die zugehörige Funktion f mit dem Funktionsterm
f(x) = [mm] \bruch{x^{m}-a^{m}}{x^{n}-a^{n}} [/mm]
an der Stelle x = a eine stetig behebbare Definitionslücke aufweist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]