www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Grenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Grenzwertbestimmung
Grenzwertbestimmung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Epsilon Delta Definition
Status: (Frage) beantwortet Status 
Datum: 19:47 Sa 26.10.2013
Autor: mel1

Aufgabe
Sei f:[1;5]nach R definiert durchf(x) [mm] =x^2. [/mm] Beweisen Sie lim x gegen 4 f(x) =16 mit Hilfe der e-d-Definition des Grenzwerts.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:onlinemathe.de

Ich kenne die Definition jedoch kann ich sie nicht anwenden.Ich hoffe mir kann jemand helfen damit ich diese Aufgabe löse.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Sa 26.10.2013
Autor: Marcel

Hallo,

> Sei f:[1;5]nach R definiert durchf(x) [mm]=x^2.[/mm] Beweisen Sie
> lim x gegen 4 f(x) =16 mit Hilfe der e-d-Definition des
> Grenzwerts.

wir setzen [mm] $x_0:=4\,.$ [/mm] Sei nun [mm] $\epsilon [/mm] > [mm] 0\,.$ [/mm]

Sei [mm] $\delta [/mm] > [mm] 0\,$ [/mm] zunächst noch unbestimmt, wir nehmen nur o.E. schon in sinnvoller Weise
(warum ist das sinnvoll) an, dass [mm] $\delta \le [/mm] 1$ sei.

Jetzt die eigentliche Aufgabe:
Wir wollen für alle $x [mm] \in [/mm] [1,5]$ herausbekommen, dass

    [mm] $|x-x_0| [/mm] < [mm] \delta$ $\Longrightarrow$ $|f(x)-f(x_0)| [/mm] < [mm] \epsilon\,.$ [/mm]

Sei also $x [mm] \in [/mm] [1,5]$ mit [mm] $|x-x_0| [/mm] < [mm] \delta\,,$ [/mm] dann folgt

    [mm] $|f(x)-f(x_0)|=...=|x-x_0|*|x+x_0| [/mm] < [mm] \delta*|x+x_0| \le \delta*(|x|+|x_0|) \le \delta*(5+4)=9*\delta\,.$ [/mm]

Wenn wir jetzt $0 < 9 [mm] \delta \le \epsilon$ [/mm] wissen, dann folgt was...?

Fazit: Man kann (bspw.) [mm] $\delta=\delta_{x_0,\epsilon}=\delta_{4,\,\epsilon}:=...$ [/mm] (Na? Idee?) wählen...

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]