www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Grenzwerte
Grenzwerte < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Mo 17.09.2018
Autor: Valkyrion

Wie entscheidet man denn bei gebrochenrationalen Funktionen von wo (also von oben oder von unten) sich die Funktion einem (endlichen: 0 oder a) Grenzwert (für x [mm] \to \infty) [/mm] nähert?


        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Di 18.09.2018
Autor: leduart

Hallo
kannst du deine Frage präzisieren, am besten an Beispielen, denn eigentlich kannst du dir doch die fkt plotten lassen oder skizzieren und siehst es dann?
Gruß ledum

Bezug
        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Di 18.09.2018
Autor: chrisno

Eine Möglichkeit ist die Ableitung, die gibt ja an, ob die Funktionswerte steigen oder fallen.
Die nächste Möglichkeit setzt voraus, dass Du schon über die Lage der Extrema und Polstellen Bescheid weißt. Dann must Du nur einen Funktionswert an einer passenden Stelle berechnen, dass heißt außerhalb des Intervalls, in dem alle Extrema und Polstellen liegen.
Dann kannst Du natürlich auch noch die Ungleichung hinschreiben und auflösen, um zu schauen, ob sie korrekt ist.

Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Do 20.09.2018
Autor: Valkyrion

Ok, danke; Also über andere Werkzeuge der Kurvendiskussion; aber im Rahmen der Grenzwertbetrachtung ist dies bei gebrochenrationalen Funktionen (z.B.: [mm] f(x)=\bruch{3x^{4}+x^{3}+1}{2x^{4}-6x+18}) [/mm] nicht möglich?

So wie dies bei solchen Funktionen möglich ist:
[mm] \limes_{x\rightarrow +\infty}((\bruch{1}{x-3})*e^{-x})=0^{+}(Funktionsgraph [/mm] nähert sich von oben der x-Achse an)

Bezug
                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Do 20.09.2018
Autor: fred97


> Ok, danke; Also über andere Werkzeuge der
> Kurvendiskussion; aber im Rahmen der Grenzwertbetrachtung
> ist dies bei gebrochenrationalen Funktionen (z.B.:
> [mm]f(x)=\bruch{3x^{4}+x^{3}+1}{2x^{4}-6x+18})[/mm] nicht möglich?


Zunächst sollte klar sein, dass $f(x) [mm] \to [/mm] 3/2$ geht für $x [mm] \to \infty$. [/mm]

Nun willst Du entscheiden ob f von oben oder von unten gegen 3/2 konvergiert.

Dazu betrachten wir, wegen $x [mm] \to \infty$, [/mm] "große" x , und zwar so groß, dass [mm] $2x^4-6x+18 [/mm] >0$ ist.

Dann ist zu entscheiden ob für solche x der Quotient

[mm] \bruch{3x^{4}+x^{3}+1}{2x^{4}-6x+18} [/mm] > 3/2 oder < 3/2 ist.

Schauen wir uns die Ungleichung

      [mm] \bruch{3x^{4}+x^{3}+1}{2x^{4}-6x+18} [/mm] > 3/2

an. Diese ist äquivalent zu

[mm] 6x^4+2x^3+2 [/mm] > [mm] 6x^4-18x+54. [/mm]

Das ist gleichbedeutend mit [mm] 2x^3+18x>52., [/mm] was für x>3 richtig ist.

Fazit: f konvergiert von oben gegen 3/2.

>  
> So wie dies bei solchen Funktionen möglich ist:
>  [mm]\limes_{x\rightarrow +\infty}((\bruch{1}{x-3})*e^{-x})=0^{+}(Funktionsgraph[/mm]
> nähert sich von oben der x-Achse an)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]