www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwerte
Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 Di 02.06.2009
Autor: Rominchen

Aufgabe
bestimmen Sie nun, falls möglich, die folgenden Grenzwerte:
[mm] \limes_{n \to \infty} (1-\bruch{1}{n^2})^n [/mm]

Hallo zusammen,
also anfangen würde ich vielleicht so:
[mm] 1-\bruch{1}{n^2}^2 [/mm] = [mm] \bruch{n!}{1-n^k}*\bruch{1}{n^2} [/mm]
Nun weiß ich aber nicht mehr weiter...
Habt ihr eine Idee???Danke...

        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Di 02.06.2009
Autor: ms2008de

Hallo,
Versuch diese Folge [mm] (1-\bruch{1}{n^{2}})^{n} [/mm] mit Hilfe der Bernoulli-Ungleichung nach unten abzuschätzen, berechne anschließend  dafür den Limes und finde noch eine Folge die größer is als [mm] (1-\bruch{1}{n^{2}})^{n} [/mm] und die den gleichen Grenzwert wie die Abschätzung nach unten hat, dann hast du mithilfe des Carabinieri-Lemmas gezeigt, wogegen die Folge konvergiert.

Viele Grüße

Bezug
        
Bezug
Grenzwerte: Tipp
Status: (Antwort) fertig Status 
Datum: 15:18 Di 02.06.2009
Autor: Roadrunner

Hallo Rominchen!


Bedenke, dass gilt:
[mm] $$\left(1-\bruch{1}{n^2}\right)^n [/mm] \ = \ [mm] \left[1^2-\left(\bruch{1}{n}\right)^2\right]^n [/mm] \ = \ [mm] \left[\left(1+\bruch{1}{n}\right)*\left(1-\bruch{1}{n}\right)\right]^n [/mm] \ = \ [mm] \left(1+\bruch{1}{n}\right)^n*\left(1-\bruch{1}{n}\right)^n$$ [/mm]
Diese Grenzwerte sollten Dir bekannt vorkommen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Di 02.06.2009
Autor: Rominchen

Danke, danke....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]