www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Grenzwerte
Grenzwerte < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Bestimmung des Grenzwertes
Status: (Frage) beantwortet Status 
Datum: 18:44 Fr 13.07.2012
Autor: AngolaLola

Aufgabe
1 Aufgabe)
[mm] \limes_{n\rightarrow\infty} \bruch{n^4 -9n^2 +5n^4}{6+10n^3-8n^4} [/mm]

2 Aufgabe)
[mm] \limes_{n\rightarrow\infty} (2+1+0,5+0,25+...+0,5^n) [/mm]

Bei der ersten Aufgaber vermute ich [mm] -\bruch{3}{4} [/mm]  als Lösung

Leider habe ich bei der 2ten Aufgabe keinerlei Ahnung auf die ösung zu kommen.. Kann mir jemand einen guten Lösungsweg verraten`?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Fr 13.07.2012
Autor: Valerie20

Hi!

> 1 Aufgabe)
>  [mm]\limes_{n\rightarrow\infty} \bruch{n^4 -9n^2 +5n^4}{6+10n^3-8n^4}[/mm]
>  
> 2 Aufgabe)
>  [mm]\limes_{n\rightarrow\infty} (2+1+0,5+0,25+...+0,5^n)[/mm]
>  Bei
> der ersten Aufgaber vermute ich [mm]-\bruch{3}{4}[/mm]  als Lösung

Wie kommst du denn auf die Vermutung [ballon]?

Das übliche vorgehen ist, dass man in Zähler und Nenner die höchste vorkommende Potenz ausklammert. Hier: [mm] $n^4$. [/mm]
Danach die limes regeln anwenden.

[mm]\limes_{n\rightarrow\infty} \bruch{\red{n^4}(-\frac{9n^2}{n^4} +6)}{\red{n^4}(\frac{6}{n^4}+\frac{10n^3}{n^4}-8)}=\dots\dots\dots[/mm]


> Leider habe ich bei der 2ten Aufgabe keinerlei Ahnung auf
> die ösung zu kommen.. Kann mir jemand einen guten
> Lösungsweg verraten'?

Schreibe das zunächst mal als Summe um. Also mit Summenzeichen.
Danach solltest du mit dem Grenzwert der geometrischen Reihe zum Ziel kommen.

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Valerie


Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Fr 13.07.2012
Autor: AngolaLola

Ich bin leider völlig überfragt :-(



Bezug
                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Fr 13.07.2012
Autor: Diophant

Hallo,

> Ich bin leider völlig überfragt :-(

Der Konstruktivitätsfaktor dieses Statements ist gleich Null. :-)

Im Ernst: nach so kurzer Zeit zu schreiben, man sei überfragt, zeugt nicht gerqade von einer ernsthaften Bemühung (die die Mathematik nun einmal erfordert, wie jedes andere Wissensgebiet auch).

Die Antworten von Valerie20 sind doch jeweils schon fast die Lösung. Wenn du bei der a) etwas nicht verstehst, dann konkretisiere das bitte.

Zu b):
Es ist

[mm] 2+1+0,5+0,25+...+0,5^n=2*\left(\bruch{1}{2}\right)^0+2*\left(\bruch{1}{2}\right)^1+...+2*\left(\bruch{1}{2}\right)^n=2*\summe_{i=0}^{n}\left(\bruch{1}{2}\right)^i [/mm]

und das ist eine geometrische Reihe. Es ist nicht zuviel verlangt, dass du mal in deinen Unterlagen oder im []Internet nachschlägst, um die explizite Summendarstellung derselben herauszusuchen und anzuwenden.


Gruß, Diophant



Bezug
                        
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Fr 13.07.2012
Autor: Richie1401

Es wäre nützlich, wenn wir deinen Wissensstand wissen - Schule oder Uni?

@Diophant: Ich war in Sachsen an einem Gymnasium: Da hat man weder etwas von einer Summendarstellung, noch von einer geometrischen Reihe jemals gehört.

Generell möchte ich aber Diophant Recht geben. Ganz klar!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]