www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGröße des Stichprobenumfangs
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Größe des Stichprobenumfangs
Größe des Stichprobenumfangs < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Größe des Stichprobenumfangs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:32 Do 19.12.2013
Autor: BunDemOut

Aufgabe
Es gelte [mm] X_i \sim \mathcal{N}(\mu,\sigma^2). [/mm] Das arithmetische Mittel [mm] \overline X=\bruch{1}{n}\sum_{i}X_i [/mm] ist dann ebenfalls normalverteilt.

Es sei [mm] \mu=100 [/mm] und [mm] \sigma=10. [/mm] Wie groß muss der Stichprobenumfang gewählt werden, damit
[mm] \IP(|\overline{X}-100|\le [/mm] 1) [mm] \ge [/mm] 0.98
ist?

Also ich habe mir dazu überlegt, das ganze mal zu standardisieren, also
[mm] \IP(|\overline{X}-100|\le [/mm] 1) [mm] \gdw \IP(-\bruch{99-\mu}{\bruch{\sigma}{\wurzel{n}}}\le\bruch{\overline X-\mu}{\bruch{\sigma}{\wurzel{n}}}\le\bruch{101-\mu}{\bruch{\sigma}{\wurzel{n}}})=2*\Phi(\bruch{101-\mu}{\bruch{\sigma}{\wurzel{n}}})-1 [/mm]

Hier verlässt mich aber mein Latein… Stimmt das bisher überhaupt?

        
Bezug
Größe des Stichprobenumfangs: Antwort
Status: (Antwort) fertig Status 
Datum: 08:17 Fr 20.12.2013
Autor: luis52


>  [mm]\IP(|\overline{X}-100|\le[/mm] 1) [mm]\gdw \IP(-\bruch{99-\mu}{\bruch{\sigma}{\wurzel{n}}}\le\bruch{\overline X-\mu}{\bruch{\sigma}{\wurzel{n}}}\le\bruch{101-\mu}{\bruch{\sigma}{\wurzel{n}}})=2*\Phi(\bruch{101-\mu}{\bruch{\sigma}{\wurzel{n}}})-1[/mm]
>  
> Hier verlässt mich aber mein Latein… Stimmt das bisher
> überhaupt?


Das sieht gut aus. Setze


[mm]2*\Phi(\bruch{101-\mu}{\bruch{\sigma}{\wurzel{n}}})-1=0.98[/mm]

und loese mit $ [mm] \mu=100 [/mm] $ und $ [mm] \sigma=10$ [/mm] nach $n$ auf.

Bezug
                
Bezug
Größe des Stichprobenumfangs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Mo 23.12.2013
Autor: BunDemOut

Ok, d.h. ja [mm] \Phi( \bruch{\wurzel{n}}{10})=\frac{1.98}{2} [/mm]
Nun schaue ich in der Tabelle der Normalverteiung für welches Argument ich als Ergebnis 0.99 erhalte, und finde 2.3. D.h. [mm] \bruch{\wurzel{n}}{10} [/mm] muss gleich 2.33 sein.

Stimmt das?

Bezug
                        
Bezug
Größe des Stichprobenumfangs: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Di 24.12.2013
Autor: Infinit

Hallo,
ja, das ist okay so. Das Ganze mal 10 nehmen und quadrieren und Du hast Dein n.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Größe des Stichprobenumfangs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 Di 24.12.2013
Autor: BunDemOut

ok, danke!
Wieso findet man überall eigentlich nur die Standardisierung ohne den [mm] \wurzel{n}-Faktor? [/mm]

Bezug
                                        
Bezug
Größe des Stichprobenumfangs: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Di 24.12.2013
Autor: Infinit

Hallo,
der Grund ist ein recht simpler. n kann man einfach ablesen und daraus alles Mögliche weitere herleiten. Bei Funktionen von n ist das eventuell nicht mehr ganz so einfach möglich, je nach Aufgabenstellung. Insofern ist die Angabe von n einfach universaler und damit besser einsetzbar.
Viele Grüße und schöne Weihnachten,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]