www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGrösse eines Körpers
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Grösse eines Körpers
Grösse eines Körpers < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grösse eines Körpers: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Do 30.12.2010
Autor: physicus

Hallo Forum

Ich habe folgende Frage, die mich beschäftigt:

Sei $\ K $ ein Körper und $\ K[c]$ wie üblich die Ring der Polynome mit Koeffizienten in $\ K $ in welche c eingesetzt wurde. Wieso kann man folgendes sagen: Wenn $\ K[c] $ ein Körper ist, dann ist $\ K[c] = Q(K[c])$ dem Quotientenkörper. Wieso kann der Körper nicht grösser als der Quotientenkörper sein?
Ich danke euch für eure Antworten!

Gruss

physicus

        
Bezug
Grösse eines Körpers: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Do 30.12.2010
Autor: andreas

hallo.

der quotientenkörper [mm]Q(R)[/mm] eines integritätsbereichs [mm]R[/mm] ist (immer) der kleinste körper, der diesen integritätsbereich enthält. die universelle eigenschaft des quotientenkörpers gibt dir doch einen homomorphismus [mm]R \to Q(R)[/mm], welcher injektiv ist (falls [mm]R[/mm] ein integritätsbereich ist).

grüße
andreas


Bezug
                
Bezug
Grösse eines Körpers: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Do 30.12.2010
Autor: physicus

Tut mir leid, aber wieso sollte dies daraus folgen? Ich kann einen Integritätsring $\ R $ in $\ Q(R) $ einbetten. Dies ist dieser injektive Ringhomo den es gibt. Die universelle Eigenschaft sagt  mir doch: Wenn ich $\ R $ in einen Körper $\ K $ einbetten kann (inj. Ringhomo), dann enthält dieser Körper $\ K $ auch $\ Q(R) $. In diesem Sinne ist $\ Q(R) $ minimal.
Würdest du in diesem Setting einfach $\ K = R $ setzen, und als Einbettung $\ id $ nehmen, das ist ja dann ein Iso, also ist der eindeutige Homomorphismus von $\ Q(R) $ nach $\ K $ ebenfalls ein Iso, also $\ Q(R) $ ismorph zu $\ K=R$ ?
Kann man so argumentieren?

Bezug
                        
Bezug
Grösse eines Körpers: Antwort
Status: (Antwort) fertig Status 
Datum: 02:41 Fr 31.12.2010
Autor: felixf

Moin!

> Tut mir leid, aber wieso sollte dies daraus folgen?

Wenn $R$ bereits ein Koerper ist, so ist $R [mm] \to [/mm] R$, $x [mm] \mapsto [/mm] x$ ein injektiver Ringhomomorphismus, und ist $R [mm] \to [/mm] K$ irgendein anderer injektiver Homomorphismus in einen Koerper $K$, so faktorisiert dieser natuerlich durch $R [mm] \to [/mm] R$. Damit erfuellt $R$ die universelle Eigenschaft und ist demnach der Quotientenkoerper von $R$.

> Ich
> kann einen Integritätsring [mm]\ R[/mm] in [mm]\ Q(R)[/mm] einbetten. Dies
> ist dieser injektive Ringhomo den es gibt. Die universelle
> Eigenschaft sagt  mir doch: Wenn ich [mm]\ R[/mm] in einen Körper [mm]\ K[/mm]
> einbetten kann (inj. Ringhomo), dann enthält dieser
> Körper [mm]\ K[/mm] auch [mm]\ Q(R) [/mm].

Sozusagen ja. Du kannst ihn darin "kanonisch" einbetten.

> In diesem Sinne ist [mm]\ Q(R)[/mm]
> minimal.
> Würdest du in diesem Setting einfach [mm]\ K = R[/mm] setzen, und
> als Einbettung [mm]\ id[/mm] nehmen, das ist ja dann ein Iso, also
> ist der eindeutige Homomorphismus von [mm]\ Q(R)[/mm] nach [mm]\ K[/mm]
> ebenfalls ein Iso, also [mm]\ Q(R)[/mm] ismorph zu [mm]\ K=R[/mm] ?
>  Kann man so argumentieren?

Ja. Ist genau das was ich oben auch geschrieben hab.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]