www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPrädikatenlogikGrundmenge mind 7 Elemente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Prädikatenlogik" - Grundmenge mind 7 Elemente
Grundmenge mind 7 Elemente < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundmenge mind 7 Elemente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Mo 29.04.2013
Autor: Lu-

Aufgabe
Sei [mm] \sigma [/mm] eine Signatur mit einem einstelligen Operationssymbol f, und sei
[mm] \phi [/mm] = [mm] \neg \exists x^0 \exists x^1 \wedge [/mm] = f [mm] x^0 [/mm] f [mm] x^1 \neg [/mm] = [mm] x^0 x^1 [/mm]
[mm] \psi [/mm] = [mm] \exists x^1 \neg \exists x^0 [/mm] = [mm] x^1 [/mm] f [mm] x^0 [/mm]
Beweisen Sie, dass die Grundmenge [mm] \underline{M} [/mm] jedes Modells M [mm] \models \wedge \phi \psi [/mm] mindestens 7 Elemente enthält.

Hallo
Mir ist klar, dass [mm] \phi [/mm] die Eigenschaft der Injektivität und [mm] \psi [/mm] die Eigenschaft der NICHT-Surjekitivität aufschreibt.
Aber wieso soll nun die Grundmenge mindestens 7 Elemente haben wenn auf ihr beide EIgenschaften gelten? Oder verstehe ich das falsch??

LG

        
Bezug
Grundmenge mind 7 Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 04:20 Di 30.04.2013
Autor: tobit09

Hallo Lu-,


>  [mm]\phi[/mm] = [mm]\neg \exists x^0 \exists x^1 \wedge[/mm] = f [mm]x^0[/mm] f [mm]x^1 \neg[/mm]
> = [mm]x^0 x^1[/mm]
>  [mm]\psi[/mm] = [mm]\exists x^1 \neg \exists x^0[/mm] = [mm]x^1[/mm] f [mm]x^0[/mm]

>  Mir ist klar, dass [mm]\phi[/mm] die Eigenschaft der Injektivität
> und [mm]\psi[/mm] die Eigenschaft der NICHT-Surjekitivität
> aufschreibt.

Genau!

Für alle [mm] $\sigma$-Strukturen $\underline{M}$ [/mm] gelten die beiden Äquivalenzen:

     [mm] $\underline{M}\models \phi\gdw f^{\underline{M}}\text{ injektiv}$ [/mm]
     [mm] $\underline{M}\models \psi\gdw f^{\underline{M}}\text{ nicht surjektiv}$ [/mm]


>  Aber wieso soll nun die Grundmenge mindestens 7 Elemente
> haben wenn auf ihr beide EIgenschaften gelten? Oder
> verstehe ich das falsch??

Die 7 ist recht willkürlich gewählt. Tatsächlich hat jedes Modell von [mm] $\wedge \phi\psi$ [/mm] unendlich viele Elemente.

Jede Abbildung [mm] $g\colon X\to [/mm] X$ mit $X$ endlich ist genau dann injektiv, wenn sie surjektiv ist. (In diesem Fall ist $g$ also schon bijektiv.)


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]