www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppe, Teilerfremdheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Gruppe, Teilerfremdheit
Gruppe, Teilerfremdheit < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe, Teilerfremdheit: Ahnungslosigkeit
Status: (Frage) beantwortet Status 
Datum: 14:41 Mo 11.06.2012
Autor: clemenum

Aufgabe
Es sei $G$ eine Gruppe der Ordnung [mm] $n\in \mathbb{N}.$ [/mm] Weiters [mm] $\exists m\in \mathbb{N}: [/mm] ggT(m,n) = 1.$  Zu zeigen: [mm] $\forall g\in [/mm] G [mm] \exists [/mm] ! [mm] b\in [/mm] G: [mm] b^m=a [/mm] .$

Ich denke hier zeigen zu müssen, dass für zu $n$ teilerfremde Zahlen [mm] $\lambda \in \mathbb{Z} [/mm] $ existieren, wo die Abbildung [mm] $x\mapsto x^{\lambda}$ [/mm] injektiv ist.

Aber, ich weiß nicht ,wie ich dies tun soll. Ich kann mir unter dem Beispiel nur wenig vorstellen. Ich sehe einfach nicht, was das mit der Teilerfremdheit zu tun haben soll.

Frage: Hilft mir der Zusammenhang: [mm] $ggT(\lambda,n) [/mm] = 1 [mm] \Rightarrow \exists l,m\in \mathbb{Z}: l\lambda [/mm] + nm = 1 $ weiter ?

        
Bezug
Gruppe, Teilerfremdheit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Mo 11.06.2012
Autor: wieschoo

Hi,
> Es sei [mm]G[/mm] eine Gruppe der Ordnung [mm]n\in \mathbb{N}.[/mm] Weiters
> [mm]\exists m\in \mathbb{N}: ggT(m,n) = 1.[/mm]  Zu zeigen: [mm]\forall g\in G \exists ! b\in G: b^m=a .[/mm]

Meinst du [mm]\forall g\in G \exists ! b\in G: b^m=\blue{g} .[/mm]?

>  
> Ich denke hier zeigen zu müssen, dass für zu [mm]n[/mm]
> teilerfremde Zahlen [mm]\lambda \in \mathbb{Z}[/mm] existieren, wo
> die Abbildung [mm]x\mapsto x^{\lambda}[/mm] injektiv ist.
>
> Aber, ich weiß nicht ,wie ich dies tun soll. Ich kann mir
> unter dem Beispiel nur wenig vorstellen. Ich sehe einfach
> nicht, was das mit der Teilerfremdheit zu tun haben soll.
>
> Frage: Hilft mir der Zusammenhang: [mm]ggT(\lambda,n) = 1 \Rightarrow \exists l,m\in \mathbb{Z}: l\lambda + nm = 1[/mm]
> weiter ?

Existenz:

Den Ansatz würde ich nachgehen. Sei G eine endl. Gruppe der Ordnung n. Man nehme sich ein [mm]g\in G[/mm] und hat [mm]g^n=e[/mm].
Laut Aufgabe ex. m mit ggT(m,n)=1, also ist [mm] $1=\alpha m+\beta [/mm] n$

Betrachte nun [mm]g^1=g^{\ldots +\ldots}[/mm]

Einsetzen, Umklammern, auseinanderschreiben, neu bezeichnen, ...

Eindeutigkeit:
Für die Eindeutigkeit würde ich den klassischen Ansatz nachgehen: Angenommen es gibt [mm] $b_1,b_2$ [/mm] mit ....

Gruß
wieschoo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]