Gruppe der Ordnung pq < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:55 Mi 12.11.2014 | Autor: | Rocky14 |
Aufgabe | Sei G eine Gruppe der Ordnung pq mit p,q prim und p<q.
Zeigen Sie:
a) G besitzt eine normale q-Sylowuntergruppe
b) Gilt "p teilt nicht q-1", so ist G zyklisch
c) G ist auflösbar |
Hallo Leute,
schonmal vielen Dank im Voraus für eure Korrektur!
zu a)
Sei p<q. Nach dem 3.Sylowsatz gilt für die Anzahl der q-Sylowuntergruppen in G:
* Sq = 1 mod q
* Sq teilt p
=> Sq [mm] \in [/mm] {1,p}
=> Sq [mm] \not= [/mm] p, da sonst p = 1 mod q, aber q kann kein Teiler von p-1 sein, wegen p<q
=> Sq = 1, da p<q gelten muss.
=> Es gibt also nur eine einzige q - Sylowuntergruppe.
=> G eine normale q-Sylowuntergruppe.
zu b)
Sei |G| = pq. Für die Anzahl der p-Sylowgruppen gilt
* Sp teilt q und
* Sp = 1 mod p
=> Sp [mm] \n [/mm] {1,q}
=> Sp [mm] \not= [/mm] q, denn dann folgt q = 1 mod p, also p teilt q-1.
=> Wiederspruch zur Voraussetzung "p teilt nicht q-1".
=> Sp = 1, also ex. eine normale p-Sylowuntergruppe von G
Die Anzahl der q-Sylowuntergruppen kennen wir schon aus a):
Es existiert eine normale q-Sylowuntergruppe.
=> Sp und Sq sind die einzigen normalen p- bzw. q-Sylowuntergruppen
Beide Sylows sind zyklisch wegen Primzahlordnung
=> [mm] \IZ/p\IZ [/mm] x [mm] \IZ/q\IZ [/mm] ist isomorph zu einer Untergruppe von G
=> Aus Kardinalitätsgründen ist |U|=|G|
=> G [mm] \cong \IZ/pq\IZ
[/mm]
=> G zyklisch
zu c)
aus a) wissen wir: G besitzt eine normale q-Sylowuntergruppe.
=> 2. Satz von Sylow: q-Sylowuntergruppen sind immer konjugiert zueinander
=> es gibt nur eine q-Sylowuntergruppe, also gilt qNq^-1 = N [mm] \forall [/mm] q [mm] \in [/mm] G
=> N Normalteiler
=> |N|=q und |G/N| = p
=> N und G/N sind zyklisch
=> N und G/N sind abelsch
=> Satz: G auflösbar <=> N und G/N auflösbar
=> N und G/N sind auflösbar, da abelsche Gruppen immer auflösbar sind
=> G auflösbar
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:56 Mi 12.11.2014 | Autor: | Teufel |
Hi!
Sieht für mich gut so aus, wobei du bei der b) noch die letzten 4 Zeilen etwas mehr begründen könntest.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:04 Do 13.11.2014 | Autor: | Rocky14 |
Mach ich. Vielen Dank fürs drüberschauen!
|
|
|
|